determinantsWHERE cd.courseId=3 AND cd.subId=6 AND chapterSlug='determinants' and status=1SELECT ex_no,page_number,question,question_no,id,chapter,solution FROM question_mgmt as q WHERE courseId='3' AND subId='6' AND chapterId='91' AND ex_no!=0 AND status=1 ORDER BY ex_no,CAST(question_no AS UNSIGNED) CBSE Class 12 Free NCERT Book Solution for Mathematics

Notice: Undefined variable: page_banner in /var/www/html/saralstudy/ss_new/web/chapter.php on line 120

Chapter 4 : Determinants


Determinant is a continuation of the previous chapter matrix. Matrix and determinant are the core topics of algebra. These will help us to solve many algebraic linear equations very easily. Matrix and determinants both are interlinked. Topics which are covered in this chapter - determinant of a square matrix (upto 3x3), minors. cofactors, finding the area of triangle, adjoint and inverse of square matrix, consistency & inconsistency and number of solutions of system of linear equation, solving system of linear equation in two or three variables using inverse of a matrix.

Exercise 1
Q:
A:

\[ \begin{vmatrix} \mathbf{2} & \mathbf{4} \\ \mathbf{-5} &  \mathbf{-1} \end{vmatrix} \]

= 2(−1) − 4(−5)

= − 2 + 20

= 18


Exercise 1
Q:
A:

(i) \begin{vmatrix} \mathbf{Cosθ} & \mathbf{−sin θ} \\ \mathbf{sin θ} &  \mathbf{cos θ} \end{vmatrix}

= (cos θ)(cos θ) − (−sin θ)(sin θ)

= cos2 θ+ sin2 θ

= 1

 

(ii) \begin{vmatrix} \mathbf{x^2 − x + 1} & \mathbf{x − 1} \\ \mathbf{x + 1} &  \mathbf{x + 1} \end{vmatrix}

= (x2x + 1)(x + 1) − (x − 1)(x + 1)

= x3x2 + x + x2x + 1 − (x2 − 1)

= x3 + 1 − x2 + 1

= x3x2 + 2


Exercise 1
Q:
A:

The given matrix is

\(u=\begin{bmatrix}1 & 2\\4 & 2\end{bmatrix}\) 

 

So 2A = 2\(\begin{bmatrix}1 & 2\\4 & 2\end{bmatrix}\)

 

          \(= \begin{bmatrix}2 & 4\\8 & 4\end{bmatrix}\)

 

so L.H.S. = |2A| \(= \begin{bmatrix}2 & 4\\8 & 4\end{bmatrix}\)

                 = 2 x 4 - 4 x 8

                = 8 - 32

                 = -24

 

Now, |A| \(= \begin{bmatrix}1 & 2\\4 & 2\end{bmatrix}\)  
= 1 x 2 - 2 x 4
= 2 - 8
= -6
 
So R.H.S. = 4 |A| = 4 x (-6) = -24
 
So L.H.S. = R.H.S.
 

Exercise 1
Q:
A:

The given matrix is

 

A=\(\begin{bmatrix}1 & 0 & 1\\0 & 1 & 2\\0 & 0 & 4\end{bmatrix}\)

 

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column (C1) for easier calculation.

 

| A| = 1\(\begin{vmatrix}1 & 2\\0 & 4\end{vmatrix}\) - 0\(\begin{vmatrix}0 & 1\\0 & 4\end{vmatrix}\) + 0\(\begin{vmatrix}0 &1\\1 & 2\end{vmatrix}\) = 1(4 – 0) – 0 + 0 = 4

 

So 27 |A| = 27 (4) = 108 ……. (i)   

 

Now 3A = 3\(\begin{bmatrix}1 & 0 & 1\\0 & 1 & 2\\0 & 0 & 4\end{bmatrix}\)=\(\begin{bmatrix}3 & 0 & 3\\0 & 3 & 6\\0 & 0 & 12\end{bmatrix}\) 

 

So |3A| = 3\(\begin{vmatrix}3 & 6\\0 & 12\end{vmatrix}\) - 0\(\begin{vmatrix}0 & 3\\0 & 12\end{vmatrix}\) + 0\(\begin{vmatrix}0 &3\\0 & 6\end{vmatrix}\)

 

            =  3 (36 – 0) = 3(36) 108 ……….. (ii)

 

From equations (i) and (ii), we have:

|3A| = 27|A|


Exercise 1
Q:
A:

(i) Let A = \(\begin{vmatrix}3 & -1 & -2\\0 & 1 & 2\\0 & 0 & 4\end{vmatrix}\)

 

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.

 

|A|  = -0\(\begin{vmatrix}-1 & -2\\-5 & 0\end{vmatrix}\) + 0\(\begin{vmatrix}3 & -2\\3 & 0\end{vmatrix}\) – (-1)\(\begin{vmatrix}3 &-1\\3 &-5\end{vmatrix}\) = (-15 + 3) = -12

 

(ii) Let A = \(\begin{vmatrix}0 & 1 & 2\\-1 & 0  & -3\\-2 & 3 & 0\end{vmatrix}\)

 

By expanding along the first row, we have:

 

|A|  = 3\(\begin{vmatrix}1 & -2\\3 & 1\end{vmatrix}\) + 4\(\begin{vmatrix}1 & -2\\2 & 1\end{vmatrix}\)  + 5\(\begin{vmatrix}1 &1\\2 &3\end{vmatrix}\)

= 3 (1+6) + 4(1+4) + 5(3-2)

= 3 (7) + 4 (5) + 5 (1)

= 21 + 20 + 5

= 46

 

(iii) Let  A = \(\begin{vmatrix}3 & -4 & 5\\1 & 1 & -2\\2 & 3 & 1\end{vmatrix}\)

 

By expanding along the first row, we have:

 

|A|  = 0\(\begin{vmatrix}0 & -3\\3 & 0\end{vmatrix}\) - 1\(\begin{vmatrix}-1 & -3\\-2 & 0\end{vmatrix}\)  + 2\(\begin{vmatrix}-1 & 0\\-2 &3\end{vmatrix}\)

= 0 – 1(0 – 6) + 2 (-3 - 0)

= -1 (-6) + 2(-3)

= 6 – 6

= 0

 

(iv) Let  A = \(\begin{vmatrix}2 & -1 & -2\\0 & 2 & -1\\3 & -5 & 0\end{vmatrix}\)

 

By expanding along the first column, we have:

 

|A|  = 2\(\begin{vmatrix}2 & -1\\-5 & 0\end{vmatrix}\) - 0\(\begin{vmatrix}-1 & -2\\-5 & 0\end{vmatrix}\)  + 3\(\begin{vmatrix}-1 & -2\\2 & -1\end{vmatrix}\)

 

= 2(0 – 5) – 0 + 3(1 + 4)

= -10 + 15 = 5


Exercise 1
Q:
A:

Let  A = \(\begin{bmatrix}1 & 1 & -2\\2 & 1 & -3\\5 & 4 & -9\end{bmatrix}\)

 

By expanding along the first row, we have:

 

|A|  = 1\(\begin{vmatrix}1 & -3\\4 & -9\end{vmatrix}\) - 1\(\begin{vmatrix}2 & -3\\5 & -9\end{vmatrix}\)  -  2\(\begin{vmatrix}2 & 1\\5 & 4\end{vmatrix}\)

= 1(-9 + 12) – 1(-18 + 15) -2(8 – 5)

= 1(3) – 1 (-3) – 2(3)

= 3 + 3 – 6

= 6 – 6

= 0


Exercise 1
Q:
A:

(i) \(\begin{vmatrix}2 & 4\\2 & 1\end{vmatrix}\) = \(\begin{vmatrix}2x & 4\\6 & x\end{vmatrix}\)

⇒2 x 1 – 5 x 4 = 2x x x – 6 x 4)

⇒ 2- 20 = 2x2 – 24

⇒2x2 = 6

⇒ x2 = 3

⇒ x = ±√3

 

(ii) \(\begin{vmatrix}2 & 3\\4 & 5\end{vmatrix}\) = \(\begin{vmatrix}x & 3\\2x  & 5\end{vmatrix}\)

⇒ 2 x 5 – 3 x 4 = x x 5 – 3 x 2x

⇒10  – 12  = 5x – 6x

⇒  -2  = -x

⇒ x = 2