Application of Derivatives Question Answers: NCERT Class 12 Mathematics

Exercise 1
Q:
A:

The area of a circle (A) with radius (r) is given by,

A = πr2

Now, the rate of change of the area with respect to its radius is given by,

\begin{align} \frac{dA}{dr} = \frac{d}{dr}(πr^2) = 2πr  \end{align}

  1. When r = 3 cm,

\begin{align} \frac{dA}{dr} = 2π (3) = 6π  \end{align}

Hence, the area of the circle is changing at the rate of 6π cm2/s when its radius is 3 cm.

  1. When r = 4 cm,

             \begin{align} \frac{dA}{dr} = 2π (4) = 8π \end{align}

Hence, the area of the circle is changing at the rate of 8π cm2/s when its radius is 4 cm.


Q:
A:

Let y m be the height of the wall at which the ladder touches. Also, let the foot of the ladder be x maway from the wall.

Then, by Pythagoras theorem, we have:

x2 + y2 = 25 [Length of the ladder = 5 m]

\begin{align}\Rightarrow y = \sqrt{25 - x^2}\end{align}

Then, the rate of change of height (y) with respect to time (t) is given by,

\begin{align}\frac{dy}{dx} = \frac{-x}{\sqrt{25 - x^2}}.\frac{dx}{dt}\end{align}

It is given that

\begin{align}\frac{dx}{dt}= 2 \; cm/s.\end{align}

\begin{align}\therefore\frac{dy}{dt} = \frac{-2x}{\sqrt{25 - x^2}}\end{align}

Now, when x = 4 m, we have:

\begin{align}\therefore\frac{dy}{dt} = \frac{-2 \times 4}{\sqrt{25 - 4^2}}=-\frac{8}{3}\end{align}

Hence, the height of the ladder on the wall is decreasing at the rate of

\begin{align}\frac{8}{3}\end{align}


Q:
A:

The equation of the curve is given as:

6y = x3 + 2

The rate of change of the position of the particle with respect to time (t) is given by,

\begin{align}6\frac{dy}{dt} = 3x^2\frac{dx}{dt}+0\end{align}

\begin{align}\Rightarrow 2\frac{dy}{dt} = x^2\frac{dx}{dt}\end{align}

When the y-coordinate of the particle changes 8 times as fast as the

\begin{align}x-coordinate\; i.e.,\left(\frac{dy}{dt} = 8\frac{dx}{dt}\right),  we \;have:\end{align}

\begin{align}2\left(8.\frac{dx}{dt}\right) = x^2.\frac{dx}{dt}\end{align}

\begin{align}\Rightarrow 16.\frac{dx}{dt} = x^2.\frac{dx}{dt}\end{align}

\begin{align}\Rightarrow (x^2 - 16).\frac{dx}{dt} =0 \end{align}

\begin{align}\Rightarrow x^2=16 \end{align}

\begin{align}\Rightarrow x=\pm 4 \end{align}

\begin{align}When\; x = 4, y = \frac{4^3 + 2}{6}=\frac{66}{6}=11\end{align}

\begin{align}When\; x = -4, y = \frac{(-4)^3 + 2}{6}=\frac{-62}{6}=\frac{-31}{3}\end{align}

Hence, the points required on the curve are 

\begin{align} (4,11)\; and \;(-4,\frac{-31}{3}).\end{align}

 


Q:
A:

The air bubble is in the shape of a sphere.

Now, the volume of an air bubble (V) with radius (r) is given by,

\begin{align} V = \frac{4}{3}\pi r^3 \end{align}

The rate of change of volume (V) with respect to time (t) is given by,

\begin{align} \frac{dV}{dt} = \frac{4}{3}\pi \frac{d}{dr}(r^3).\frac{dr}{dt} \;\;\;[By\; Chain\; Rule] \end{align}

\begin{align} = \frac{4}{3}\pi (3r^2).\frac{dr}{dt} \end{align}

\begin{align} = \frac{4}{3}\pi r^2.\frac{dr}{dt} \end{align}

It is given that

\begin{align} \frac{dr}{dt}=\frac{1}{2} cm/s .\end{align}

Therefore, when r = 1 cm,

\begin{align} \frac{dV}{dt}=4\pi(1)^2.(\frac{1}{2})=2\pi\; cm^3/s \end{align}

Hence, the rate at which the volume of the bubble increases is 2π cm3/s.


Q:
A:

The volume of a sphere (V) with radius (r) is given by,

\begin{align} V=\frac{4}{3}\pi r^3 \end{align}

It is given that:

\begin{align} Diameter =\frac{3}{2}(2x+1) \end{align}

\begin{align} \Rightarrow r =\frac{3}{4}(2x+1) \end{align}

\begin{align} \therefore V =\frac{4}{3}\pi(\frac{3}{4})^3(2x+1)^3=\frac{9}{16}\pi\times(2x+1)^3 \end{align}

Hence, the rate of change of volume with respect to x is as

\begin{align} \frac{dV}{dx}=\frac{9}{16}\pi\frac{d}{dx}(2x+1)^3=\frac{9}{16}\pi\times3(2x+1)^2 \times2=\frac{27}{8}\pi(2x+1)^2\end{align}


Q:
A:

The volume of a cone (V) with radius (r) and height (h) is given by,

\begin{align}V=\frac{1}{3}\pi r^2h\end{align}

It is given that,

\begin{align}h=\frac{1}{6} r\Rightarrow r =6h\end{align}

\begin{align}\therefore V=\frac{1}{3}\pi (6h)^2.h = 12\pi h^3\end{align}

The rate of change of volume with respect to time (t) is given by,

\begin{align} \frac{dV}{dt}=12 \pi \frac{d}{dh}(h^3).\frac{dh}{dt}[By\; Chain\; Rule]\end{align}

\begin{align}=12 \pi (3h^2).\frac{dh}{dt}\end{align}

\begin{align}=36 \pi h^2.\frac{dh}{dt}\end{align}

It is also given that

\begin{align}\frac{dV}{dt}=12\;cm^3/s \end{align}

Therefore, when h = 4 cm, we have:

\begin{align}12=36\pi (4)^2.\frac{dh}{dt}\end{align}

\begin{align}\Rightarrow \frac{dh}{dt}=\frac{12}{36\pi (16)}=\frac{1}{48\pi}\end{align}

Hence, when the height of the sand cone is 4 cm, its height is increasing at the rate of

\begin{align}\frac{1}{48\pi}.\end{align}


Q:
A:

Marginal cost is the rate of change of total cost with respect to output.

∴Marginal cost 

\begin{align}MC=\frac{dC}{dx}=0.007 (3x^2) - 0.003(2x) + 15\end{align}

MC = 0.021 x- 0.006x + 15

When x = 17, MC = 0.021 (172) − 0.006 (17) + 15

= 0.021(289) − 0.006(17) + 15

= 6.069 − 0.102 + 15

= 20.967

Hence, when 17 units are produced, the marginal cost is Rs. 20.967.


Q:
A:

Marginal revenue is the rate of change of total revenue with respect to the number of units sold.

\begin{align}MR=\frac{dR}{dx}\end{align}

∴Marginal Revenue

MR = 13(2x) + 26 = 26x + 26

When x = 7,

MR = 26(7) + 26 = 182 + 26 = 208

Hence, the required marginal revenue is Rs 208.


Q:
A:

The area of a circle (A) with radius (r) is given by,

A = πr2

Therefore, the rate of change of the area with respect to its radius r is

\begin{align}\frac{dA}{dr} = \frac{d}{dr}(\pi r^2) = 2\pi r\end{align}

∴When r = 6 cm,

\begin{align}\frac{dA}{dr} = 2\pi \times 6 =12 \pi\; cm^2/s\end{align}

Hence, the required rate of change of the area of a circle is 12π cm2/s.

The correct answer is B.


Q:
A:

Marginal revenue is the rate of change of total revenue with respect to the number of units sold.

\begin{align}MR=\frac{dR}{dx} \end{align}

∴Marginal Revenue (MR)= 3(2x) + 36 = 6x + 36

∴When x = 15,

MR = 6(15) + 36 = 90 + 36 = 126

Hence, the required marginal revenue is Rs 126.

The correct answer is D.


Q:
A:

Let x be the length of a side, V be the volume, and s be the surface area of the cube.

Then, V = x3 and S = 6x2 where x is a function of time t.

It is given that

\begin{align} \frac{dV}{dt} = 8 cm^3 / s \end{align}

Then, by using the chain rule, we have:

\begin{align} \frac{dV}{dt} = \frac{d}{dt} (x^3) . \frac{dx}{dt} = 3x^2 . \frac{dx}{dt} =8 \end{align}

 \begin{align} \frac{dx}{dt} = \frac{8}{3 x^2} ……… (1) \end{align}

Now \begin{align} \frac{dS}{dt} = \frac{d}{dx}(6x^2).\frac{dx}{dt} [By Chain Rule] \end{align}

                    \begin{align} =12x .\frac{dx}{dt} =12x.(\frac{8}{3x^2}) = \frac{32}{x}  \end{align}

Thus, when x = 12 cm, \begin{align} \frac{dS}{dt} = \frac{32}{12} cm^2 / s = 8 cm^2 / s \end{align}

Hence, if the length of the edge of the cube is 12 cm, then the surface area is increasing at the rate of \begin{align} \frac{8}{3} cm^2 / s \end{align}.


Q:
A:

The area of a circle (A) with radius (r) is given by,

A = πr2

Now, the rate of change of area (A) with respect to time (t) is given by,

\begin{align} \frac{dA}{dt}=\frac{d}{dt}(\pi r^2).\frac{dr}{dt}=2\pi r\frac{dr}{dt}\;\;\;[By\; Chain \;Rule]\end{align}

It is given that,

\begin{align} \frac{dr}{dt}= 3\; cm/s\end{align}

\begin{align} \therefore \frac{dA}{dt}= 2\pi r(3)=6 \pi r \end{align}

Thus, when r = 10 cm,

\begin{align} \frac{dA}{dt}= 6\pi(10)=60 \pi\; cm^2/s \end{align}

Hence, the rate at which the area of the circle is increasing when the radius is 10 cm is 60π cm2/s.


Q:
A:

Let x be the length of a side and V be the volume of the cube. Then,

V = x3.

\begin{align}\therefore \frac{dV}{dt}=3x^2.\frac{dx}{dt}\;\;\;[By\; Chain \;Rule]\end{align}

It is given that,

\begin{align} \frac{dx}{dt}=3 \;cm^2/s\end{align}

\begin{align}\therefore \frac{dV}{dt}=3x^2.(3) = 9x^2\end{align}

Thus, when x = 10 cm,

\begin{align} \frac{dV}{dt}=9 (10)^2=900 \;cm^3/s\end{align}

Hence, the volume of the cube is increasing at the rate of 900 cm3/s when the edge is 10 cm long. 


Q:
A:

The area of a circle (A) with radius (r) is given by A = πr2.

Therefore, the rate of change of area (A) with respect to time (t) is given by,

\begin{align} \frac{dA}{dt}=\frac{d}{dt}(\pi r^2)=\frac{d}{dt}(\pi r^2).\frac{dr}{dt}=2\pi r\frac{dr}{dt}\;\;\;[By\; Chain \;Rule]\end{align}

It is given that

\begin{align} \frac{dr}{dt}=5\; cm/s\end{align}

Thus, when r = 8 cm,

\begin{align} \frac{dA}{dt}=2\pi(8)(5)=80\pi\end{align}

Hence, when the radius of the circular wave is 8 cm, the enclosed area is increasing at the rate of 80π cm2/s.


Q:
A:

The circumference of a circle (C) with radius (r) is given by

C = 2πr.

Therefore, the rate of change of circumference (C) with respect to time (t) is given by,

\begin{align} \frac{dC}{dt}=\frac{dC}{dr}.\frac{dr}{dt}\;\;\; [By\; Chain\; Rule]\end{align}

\begin{align} =\frac{d}{dr}(2\pi r).\frac{dr}{dt}\end{align}
\begin{align} =2\pi.\frac{dr}{dt}\end{align}

It is given that

\begin{align} \frac{dr}{dt}=0.7\; cm/s\end{align}

Hence, the rate of increase of the circumference 2π(0.7)=1.4π cm/s


Q:
A:

Since the length (x) is decreasing at the rate of 5 cm/minute and the width (y) is increasing at the rate of 4 cm/minute, we have:

\begin{align} \frac{dx}{dt} = -5 \;cm/min\; and \; \frac{dy}{dt}= 4 \;cm/min\end{align}

(a) The perimeter (P) of a rectangle is given by,

P = 2(x + y)

\begin{align} \therefore\frac{dp}{dt} = 2\left(\frac{dx}{dt} + \frac{dy}{dt}\right)= 2(-5+4)=-2\;cm/min\end{align}

Hence, the perimeter is decreasing at the rate of 2 cm/min.

(b) The area (A) of a rectangle is given by,

A = x y

\begin{align} \therefore\frac{dA}{dt} = \frac{dx}{dt}.y + x.\frac{dy}{dt}=-5y + 4x \end{align}

When x = 8 cm and y = 6 cm, 

\begin{align} \frac{dA}{dt} = (-5 \times 6 + 4 \times 8)\; cm^2/min = 2\; cm^2/min\end{align}

Hence, the area of the rectangle is increasing at the rate of 2 cm2/min. 


Q:
A:

The volume of a sphere (V) with radius (r) is given by,

\begin{align} V=\frac{4}{3}\pi r^2\end{align}

∴Rate of change of volume (V) with respect to time (t) is given by,

\begin{align} \frac{dV}{dt} =\frac{dV}{dr}.\frac{dr}{dt}\;\;\;[By\; Chain\; Rule]\end{align}

\begin{align} =\frac{d}{dr}\left(\frac{4}{3}\pi r^3\right).\frac{dr}{dt}\end{align}

\begin{align} =4\pi r^2.\frac{dr}{dt}\end{align}

It is given that

\begin{align} \frac{dV}{dt}=900\; cm^3/s\end{align}

\begin{align} \therefore 900=4\pi r^2.\frac{dr}{dt}\end{align}

\begin{align} \Rightarrow \frac{dr}{dt}=\frac{900}{4\pi r^2}=\frac{225}{\pi r^2}\end{align}

Therefore, when radius = 15 cm,

\begin{align} \frac{dr}{dt}=\frac{225}{\pi (15)^2}=\frac{1}{\pi }\end{align}

Hence, the rate at which the radius of the balloon increases when the radius is 15 cm is 

\begin{align} \frac{1}{\pi }\end{align}


Q:
A:

The volume of a sphere (V) with radius (r) is given by

\begin{align} V=\frac{4}{3 }\pi r^3\end{align}

Rate of change of volume (V) with respect to its radius (r) is given by,

\begin{align} \frac{dV}{dr }=\frac{d}{dr}\left(\frac{4}{3}\pi r^3\right)=\frac{4}{3}\pi \left(3r^2\right)=4\pi r^2\end{align}

Therefore, when radius = 10 cm,

\begin{align} \frac{dV}{dr }=4\pi(10)^2=400\pi\end{align}

Hence, the volume of the balloon is increasing at the rate of 400π cm3/s.