Complete NCERT Solutions Guide
Access step-by-step solutions for all NCERT textbook questions
==================>>>1==================>>>2==================>>>3==================>>>4
Welcome to the Chapter 2 - Inverse Trigonometric Functions, Class 12 Mathematics NCERT Solutions page. Here, we provide detailed question answers for Chapter 2 - Inverse Trigonometric Functions. The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.
Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics Inverse Trigonometric Functions and excel in their exams. By going through these Inverse Trigonometric Functions question answers, you can strengthen your foundation and improve your performance in Class 12 Mathematics. Whether you’re revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.
\begin{align} sin^{-1}\left(-\frac{1}{2}\right)=y \;\;Then\;\; sin y = -\frac{1}{2} = -sin\left(\frac{\pi}{6}\right)= sin\left(-\frac{\pi}{6}\right)\end{align}
We know that the range of the principal value branch of sin−1 is
\begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] and \;\;sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}\end{align}
Therefore, the principal value of
\begin{align} sin^{-1}\left(-\frac{1}{2}\right) is -\frac{\pi}{6}\end{align}
\begin{align} Let \;\; cosec^{-1}\left({-\sqrt2}\right)=y \;\;Then\;\; cosec y = -{\sqrt2} =- cosec\left(\frac{\pi}{4}\right) = cosec\left(-\frac{\pi}{4}\right)\end{align}
We know that the range of the principal value branch of cosec−1 is
\begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] - \left(0 \right) and \;\;cosec\left(-\frac{\pi}{4}\right) = -\sqrt2.\end{align}
Therefore, the principal value of
\begin{align} cosec^{-1}\left(-\sqrt2\right) is -\frac{\pi}{4}\end{align}
\begin{align} Let \;\; tan^{-1}(1)=x. \;\;Then\;\; tan x = 1 = tan\left(\frac{\pi}{4}\right).\end{align}
\begin{align} \therefore tan^{-1}(1)=tan\left(\frac{\pi}{4}\right)\end{align}
\begin{align} Let \;\;cos^{-1}\left(-\frac{1}{2}\right)=y. \;\;Then,\;\; cos y = -\frac{1}{2} = -cos\left(\frac{\pi}{3}\right)= cos\left(\pi - \frac{\pi}{3}\right) = cos\left(\frac{2\pi}{3}\right)\end{align}
\begin{align} \therefore cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}\end{align}
\begin{align} Let \;\; sin^{-1}\left(-\frac{1}{2}\right)=z. \;\;Then,\;\; sin z = -\frac{1}{2} = -sin\left(\frac{\pi}{6}\right)= sin\left(-\frac{\pi}{6}\right)\end{align}
\begin{align} \therefore sin^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}\end{align}
\begin{align} \therefore tan^{-1} (1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)\end{align}
\begin{align} =\frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}\end{align}
\begin{align} =\frac{3\pi + 8\pi -2\pi}{12}=\frac{9\pi}{12}=\frac{3\pi}{4}\end{align}
\begin{align} Let \;\;cos^{-1}\left(\frac{1}{2}\right) =x. \;\;Then,\;\; cos x = \frac{1}{2} = cos\left(\frac{\pi}{3}\right).\end{align}
\begin{align} \therefore cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}\end{align}
\begin{align} Let \;\; sin^{-1}\left(\frac{1}{2}\right)=y. \;\;Then,\;\; sin y = \frac{1}{2} = sin\left(\frac{\pi}{6}\right).\end{align}
\begin{align} \therefore sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}\end{align}
\begin{align} \therefore cos^{-1}\left(\frac{1}{2}\right) + 2sin^{-1}\left(\frac{1}{2}\right)\end{align}
\begin{align} =\frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}\end{align}
It is given that sin−1 x = y.
We know that the range of the principal value branch of sin−1 is
\begin{align} \left[-\frac{\pi}{2} ,\frac{\pi}{2}\right] \end{align}
Therefore,
\begin{align} (B) -\frac{\pi}{2} ≤ y ≤ \frac{\pi}{2} \end{align}
\begin{align} Let\;\; cos^{-1}\left(\frac{\sqrt3}{2}\right)=y, \;\;Then,\;\; cos y = \frac{\sqrt3}{2} = cos\left(\frac{\pi}{6}\right)\end{align}
We know that the range of the principal value branch of cos−1 is
\begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{\pi}{6}\right) = \frac{\sqrt3}{2}\end{align}
Therefore, the principal value of
\begin{align} cos^{-1}\left(\frac{\sqrt3}{2}\right) is \frac{\pi}{6}\end{align}
\begin{align} Let \;\; cosec^{-1}\left({2}\right)=y \;\;Then\;\; cosec y = 2 = cosec\left(\frac{\pi}{6}\right)\end{align}
\begin{align} Let \;\; tan^{-1}\left(-\sqrt3\right)=y \;\;Then\;\; tan y = -\sqrt3 = -tan\left(\frac{\pi}{3}\right)= tan\left(-\frac{\pi}{3}\right)\end{align}
We know that the range of the principal value branch of tan−1 is
\begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) and \;\;tan\left(-\frac{\pi}{3}\right) = -\sqrt3\end{align}
\begin{align} Let\;\; cos^{-1}\left(-\frac{1}{2}\right)=y, \;\;Then,\;\; cos y = -\frac{1}{2} = - cos\left(\frac{\pi}{3}\right)=cos\left(\pi - \frac{\pi}{3}\right) = cos\left(\frac{2\pi}{3}\right)\end{align}
We know that the range of the principal value branch of cos−1 is
\begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}\end{align}
Therefore, the principal value of
\begin{align} cos^{-1}\left(-\frac{1}{2}\right) is \frac{2\pi}{3}\end{align}
\begin{align} Let \;\; tan^{-1}\left(-1\right)=y. \;\;Then,\;\; tan y = -1 = -tan\left(\frac{\pi}{4}\right)= tan\left(-\frac{\pi}{4}\right)\end{align}
We know that the range of the principal value branch of tan−1 is
\begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) and \;\;tan\left(-\frac{\pi}{4}\right) = - 1\end{align}
Therefore, the principal value of
\begin{align} tan^{-1}\left(- 1\right) is -\frac{\pi}{4}\end{align}
\begin{align} Let \;\; sec^{-1}\left(\frac{2}{\sqrt3}\right)=y \;\;Then\;\; sec y = \frac{2}{\sqrt3} = sec\left(\frac{\pi}{6}\right)\end{align}
We know that the range of the principal value branch of sec−1 is
\begin{align} \left[0,\pi\right] - \left(\frac{\pi}{2}\right) and \;\;sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt3}\end{align}
Therefore, the principal value of
\begin{align} sec^{-1}\left(\frac{2}{\sqrt3}\right) is \frac{\pi}{6}\end{align}
\begin{align} Let \;\; cot^{-1}\left(\sqrt3\right)=y. \;\;Then,\;\; cot y = \sqrt3 = cot\left(\frac{\pi}{6}\right).\end{align}
We know that the range of the principal value branch of cot−1 is
\begin{align} \left(0, \pi\right) and \;\;cot\left(\frac{\pi}{6}\right) = \sqrt3.\end{align}
\begin{align} Let\;\; cos^{-1}\left(-\frac{1}{\sqrt2}\right)=y, \;\;Then,\;\; cos y = -\frac{1}{\sqrt2} = - cos\left(\frac{\pi}{4}\right)=cos\left(\pi - \frac{\pi}{4}\right) = cos\left(\frac{3\pi}{4}\right)\end{align}
We know that the range of the principal value branch of cos−1 is
\begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt2}\end{align}
Therefore, the principal value of
\begin{align} cos^{-1}\left(-\frac{1}{\sqrt2}\right) is \frac{3\pi}{4}\end{align}
Join thousands of students who have improved their academic performance with our comprehensive study resources.