SELECT * FROM question_mgmt as q WHERE id=1158 AND status=1 SELECT id,question_no,question,chapter FROM question_mgmt as q WHERE courseId=3 AND subId=6 AND chapterId=96 and ex_no='2' AND status=1 ORDER BY CAST(question_no AS UNSIGNED)
\begin{align} y = xsinx:xy{'}=y +x\sqrt{x^2 -y^2}(x\neq0\; and\; x>y\; or\; x<-y)\end{align}
y= x.sinx
Differentiating both sides of this equation with respect to x, we get:
\begin{align} y^{'} =\frac{d}{dx}\left(x.sinx\right)\end{align}
\begin{align}\Rightarrow y^{'} =sinx. \frac{d}{dx}\left(x\right)+ x. \frac{d}{dx}\left(sinx\right)\end{align}
\begin{align} \Rightarrow y^{'} =sinx + x.cosx\end{align}
Differentiating both sides of this equation with respect to x, we get:
L.H.S. =xy' = x(sinx + xcosx)
\begin{align} =x.sinx + x^2.cosx\end{align}
\begin{align} =y + x^2.\sqrt{1-sin^2x}\end{align}
\begin{align} =y + x^2.\sqrt{1-\left(\frac{y}{x}\right)^2}\end{align}
\begin{align} =y + x^2.\sqrt{\frac{x^2-y^2}{x^2}}\end{align}
\begin{align} =y + x.\sqrt{x^2-y^2}\end{align}
R.H.S.
Comments
Taking Screenshots on your Samsung Galaxy M31s is very easy and quick.
Report a problem on Specifications:
Taking Screenshots on your Samsung Galaxy M31s is very easy and quick.
Report a problem on Specifications:
Taking Screenshots on your Samsung Galaxy M31s is very easy and quick.
Report a problem on Specifications: