SELECT * FROM question_mgmt as q WHERE id=1559 AND status=1 SELECT id,question_no,question,chapter FROM question_mgmt as q WHERE courseId=3 AND subId=6 AND chapterId=88 and ex_no='3' AND status=1 ORDER BY CAST(question_no AS UNSIGNED)
Consider f : R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f–1 of f given by , where R+ is the set of all non-negative real numbers.
f : R+ → [4, ∞) is given as f(x) = x2 + 4.
One-one:
Let f(x) = f(y).
∴ f is a one-one function.
Onto:
For y ∈ [4, ∞), let y = x2 + 4.
Therefore, for any y ∈ R, there exists such that
.
∴ f is onto.
Thus, f is one-one and onto and therefore, f - 1 exists.
Let us define g: [4, ∞) → R+ by,
∴
Hence, f is invertible and the inverse of f is given by
Comments
Taking Screenshots on your Samsung Galaxy M31s is very easy and quick.
Report a problem on Specifications:
Taking Screenshots on your Samsung Galaxy M31s is very easy and quick.
Report a problem on Specifications:
Taking Screenshots on your Samsung Galaxy M31s is very easy and quick.
Report a problem on Specifications: