Pair of Linear Equations in Two Variables Question Answers: NCERT Class 10 Mathematics

Exercise 1
Q:
A:

Let the present age of Aftab and his father be x years and y years respectively.

                   According to question,

                   7 years ago, we have

                                                          x – 7 = 7 (y - 7)

          Or,                                          x – 7 = 7y – 49

          Or,                                          x – 7y = - 42       …………… (1)

          3 years from now, we have

                                                        (x + 3) = 3 (y + 3)

          Or,                                        x + 3 = 3y + 9

          Or,                                        x – 3y = 6            ……………. (2)

 

                 Graphical Representation

                 From equation (1),                   x – 7y = -42

                   Table value of x and y

x:

0

-42

-35

y:

6

0

1

                  From equation (2),     x – 3y = 6

                   Table value of x and y

x:

0

9

6

y:

-2

1

0

           Plotting the tables on the graph:

Q:

A:

Let the cost of one bat and one ball be x Rupees and y Rupees respectively.

                      According to first condition,

                                                          3x + 6y = ₨ 3900    …………….(1) 

                      According to second condition,              

                                                           x + 3y = ₨ 1300   …………….(2) 

                  Graphical Representation

                 From equation (1),                  3x + 6y = 3900

                   Table value of x and y

x:

100

300

700

y:

600

500

300

                  From equation (2),                   x + 3y = 1300

                   Table value of x and y

x:

100

700

400

y:

400

200

300

                   1 Unit = 100

Q:

A:

Let the cost of one kg apple be x ₨ and 1 kg grapes be y ₨.

                      According to first condition,

                                                                           2x + y = 160 ₨ …………..(1)

                      According to second condition,                 

                                                                           4x + 2y = 300

                                                                           2x + y = 150 ……………….(2)

                 Graphical Representation

                 Table for equation (1),                    2x + y = 160

                   Table value of x and y

x:

40

60

80

y:

60

40

0

                  Table for equation (2),                    2x + y = 150

                   Table value of x and y

x:

40

60

20

y:

70

30

110

      Exercise 3

Q:
A:

(i)                              x + y = 14                 …………….(1)

           x – y = 4                  …………….(2)

                                 From the equation (1), we get

                                   x = 14 - y                 …………….(3)

                                 Putting the value of x in equation (2), we get

                                    (14 - y) – y = 4                                                   

                                    14 – y – y = 4                                                       

                                     - 2y = - 10                                                    

                                   

                                       Putting the value of y in equation (3),

                                       x = 14 – 5 

                                       x = 9

                                        Hence,     x = 9 and y = 5

(iii)                             3x - y = 3                 …………….(1)

             9x – 3y = 9…………….(2)                                

                                 From the equation (1), we get

                                                  

                                  Putting the value of y in equation (2), we get

                                     9x – 3 (3x - 3) = 9

                                      9x – 9x + 9 = 9

                                      9 = 9, which is true.

                                  Therefore, pair of linear equation has infinite many solutions.

Q:

A:


Q:
A:

(i)                  Let the numbers be x and y, such that x > y

Therefore, according to question        

                      x - y = 26                 …………….(1)

x = 3y…………….(2)

                                   Putting the value of x from equation (2) to equation (1), we get

                                                                                    3y – y = 26

                                                                                    2y = 26

                                                                                     y = 13                  

                                    Putting the value in equation (2), we get

                                                                                     x = 3 x 13

                                                                                     x = 39   

                                    Hence, the numbers are 39 and 13.

(ii) Let one be x◦ and other be y◦ such that (x◦ > y◦)

Therefore, according to question          

                          x◦ + y◦ = 180◦…………….(1) (Supplementary angles)

x◦ = 18 + y◦…………….(2)

Putting the value of x from equation (2) to equation (1), we get                                             

18 + y◦ + y◦ = 180◦

2y◦ = 162◦

Putting the value of y in equation (2), we get

                      x◦ = 18 + 81

x = 99

(iv)                 Let the fixed charge be = ₨ x

Let the charge for 1 km distance be = ₨ y

According to first condition,

                                                                                   x + 10y = ₨ 105

                                                                                      x = 105 – 10y                  …………….(1)

                           According to second condition,

                                                                                     x + 15y = 155                  ………………(2) 

                                    Putting the value of x in equation (2), we get

                                                                                    105 – 10y + 15y = 155

                                                                                    5y = 50

                                                                                     y = 10 

                                    Putting the value of y in equation (2), we get

                                                                                     x + 15 x 10 = 155                               

                                                                                     x = 5

                                    Hence, the fixed charge for taxi is ₨ 5 and, the charge for one km distance is ₨ 50.

                                    Charge for 25 km distance

                                                                                     = 25 x 10 + 5

                                                                                     = ₨ 255

(vi)                 Let the age of Jacob be = x years

Let the age of Jacob’s father be = y years

After 5 years,

                                                Jacob’s age               x + 5 years

                                                   Son’s age                  y + 5 years            

                           According to question,

                       x + 5 = 3 (y + 5)           

x + 5 = 3y + 15

x = 3y + 10………………(1)

Five years ago,

(x- 5) = 7 (y - 5)

x – 5 = 7y – 35

x – 7y = -30……………….(2)

                                    Putting the value of x in equation (2), we get

                                                                                    3y + 10 - 7y = -30

                                                                                    -4y = -40

                                                                                     y = 10 

                                    Putting the value of y in equation (1), we get

                                                                                     x = 3 (10) + 10                                 

                                                                                     x = 40

                                    Hence, the present age of Jacob is 40 years and the age of his son is 10 years.


Exercise 2


Q:
A:

Given equations,

                            x + y + 1 = 0 …………………. (1)

                           3x + 2y + 2 = 0 ………………….. (2)

                           From the equation (1), we get

x

0

1

2

y

1

2

3

         From the equation (2), we get                

x

4

3

0

y

0

3

6

 The coordinates of vertices of triangle formed by these lines and the x- axis are (-1, 0), (4, 0), (2, 3).