The unit of length convenient on the nuclear scale is a fermi : 1 f = 10 - 15 m. Nuclear sizes obey roughly the following empirical relation : r = r0 A1/3
where r is the radius of the nucleus, A its mass number, and r0 is a constant equal to about, 1.2 f. Show that the rule implies that nuclear mass density is nearly constant for different nuclei. Estimate the mass density of sodium nucleus. Compare it with the average mass density of a sodium atom obtained in Exercise. 2.27.
Radius of nucleus r is given by the relation,
r = r0 A1/3 … (i)
r0 = 1.2 f = 1.2 × 10-15 m
Volume of nucleus, V= 4/3 πr3
= 4/3 π( r0 A1/3)3 = 4/3 π r03 A ......(ii)
Now, the mass of a nuclei M is equal to its mass number i.e.,
M = A amu = A × 1.66 × 10-27 kg
Density of nucleus,
p = Mass of nucleus / Volume of nucleus
This relation shows that nuclear mass depends only on constant r0. Hence, the nuclear mass densities of all nuclei are nearly the same.
Density of sodium nucleus is given by,
= (4.98 / 21.71) x 10-18
= 2.29 x 10-17 kg m-3
NCERT questions are designed to test your understanding of the concepts and theories discussed in the chapter. Here are some tips to help you answer NCERT questions effectively:
Welcome to the NCERT Solutions for Class 11 Physics - Chapter . This page offers a step-by-step solution to the specific question from Excercise 1 , Question 28: The unit of length convenient on the nuclear scale is a fermi : 1 f = 10 - 15 m. Nuclear sizes obey ....
Comments