SELECT * FROM question_mgmt as q WHERE id=3328 AND status=1 SELECT id,question_no,question,chapter FROM question_mgmt as q WHERE courseId=2 AND subId=8 AND chapterId=102 and ex_no='1' AND status=1 ORDER BY CAST(question_no AS UNSIGNED)
Figure 3.23 gives the x-t plot of a particle executing one-dimensional simple harmonic motion. (You will learn about this motion in more detail in Chapter14). Give the signs of position, velocity and acceleration variables of the particle at t = 0.3 s, 1.2 s, – 1.2 s.
(Fig 3.23)
Negative, Negative, Positive (at t = 0.3 s)
Positive, Positive, Negative (at t = 1.2 s)
Negative, Positive, Positive (at t = –1.2 s)
For simple harmonic motion (SHM) of a particle, acceleration (a) is given by the relation:
a = – ω2x ω → angular frequency …………..… (i)
t = 0.3 s
In this time interval, x is negative. Thus, the slope of the x-t plot will also be negative.
Therefore, both position and velocity are negative.
However, using equation (i), acceleration of the particle will be positive.
t = 1.2 s
In this time interval, x is positive.
Thus, the slope of the x-t plot will also be positive.
Therefore, both position and velocity are positive.
However, using equation (i), acceleration of the particle comes to be negative.
t = – 1.2 s
In this time interval, x is negative. Thus, the slope of the x-t plot will also be negative. Since both x and t are negative, the velocity comes to be positive. From equation (i), it can be inferred that the acceleration of the particle will be positive.
Comments
Taking Screenshots on your Samsung Galaxy M31s is very easy and quick.
Report a problem on Specifications:
Taking Screenshots on your Samsung Galaxy M31s is very easy and quick.
Report a problem on Specifications:
Taking Screenshots on your Samsung Galaxy M31s is very easy and quick.
Report a problem on Specifications: