Calculate the wavelength for the emission transition if it starts from the orbit having radius 1.3225 nm and ends at 211.6 pm. Name the series to which this transition belongs and the region of the spectrum.
The radius of the nth orbit of hydrogen-like particles = 0.529n2/Z Å
Now r1 = 1.3225 nm or 1322.5 pm = 52.9n12
And
r2 = 211.6pm = 52.9n22/Z
Therefore r1/r2 = 1322.5 / 211.6 = n12/n22
or n12/n22 = 6.25
or n1/n2 = 2.5
therefore n2 = 2 , n1 = 5.
Thus the transition is from 5th orbit to 2nd orbit. It belongs Balmer series
Wave number for the transition is given by,
1.097 × 107 m–1 (1/22-1/52)
=1.097 x 107m-1 (21/100)
= 2.303 × 106 m–1
Wavelength (λ) associated with the emission transition is given by,
= 0.434 ×10–6 m
λ = 434 nm
the region is visible region
NCERT questions are designed to test your understanding of the concepts and theories discussed in the chapter. Here are some tips to help you answer NCERT questions effectively:
Welcome to the NCERT Solutions for Class 11 Chemistry - Chapter . This page offers a step-by-step solution to the specific question from Excercise 1 , Question 56: Calculate the wavelength for the emission transition if it starts from the orbit having radius 1.322....
Comments
Answers are very helpfull but pleas do give examples along with examples