Assuming complete dissociation, calculate the pH of the following solutions:
(a) 0.003 M HCl
(b) 0.005 M NaOH
(c) 0.002 M HBr
(d) 0.002 M KOH
(i) 0.003MHCl:
H2O + HCl ↔ H3O+ + Cl-
Since HCl is completely ionized,
[H3O+] = [ HCl]
⇒ [H3O+] = = 0.003
Now
pH = -log [H3O+] = -log (0.003)
= 2.52
Hence, the pH of the solution is 2.52.
(b) 0.005 M NaOH
NaOH(aq) ↔ Na+(aq) + HO-(aq)
[NaOH] = [ HO-]
⇒ [ HO-] = 0.05
pOH = -log[ HO-] = -log (0.05)
= 2.30
∴ pH = 14 - 2.30 = 11.70
Hence, the pH of the solution is 11.70.
(c) 0.002 M HBr
HBr + H2O ↔ H3O+ + Br-
[HBr] = [H3O+]
⇒ [H3O+] = 0.002
∴ pH = -log [H3O+] = -log (0.002)
= 2.69
Hence, the pH of the solution is 2.69.
(d) 0.002 M KOH
KOH(aq) ↔ K+(aq) + OH-(aq)
[OH-] = [KOH]
⇒ [OH-] = 0.002
Now pOH = -log[OH-] = -log (0.002)
= 2.69
∴ pH = 14-2.69 = 11.31
Hence, the pH of the solution is 11.31.
NCERT questions are designed to test your understanding of the concepts and theories discussed in the chapter. Here are some tips to help you answer NCERT questions effectively:
Welcome to the NCERT Solutions for Class 11 Chemistry - Chapter . This page offers a step-by-step solution to the specific question from Excercise 1 , Question 48: Assuming complete dissociation, calculate the pH of the following solutions: (a) 0.003 M HCl (....
Comments