Complete NCERT Solutions Guide
Access step-by-step solutions for all NCERT textbook questions
==================>>>1==================>>>2==================>>>3==================>>>4
Welcome to the Chapter 7 - Integrals, Class 12 Mathematics NCERT Solutions page. Here, we provide detailed question answers for Chapter 7 - Integrals. The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.
Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics Integrals and excel in their exams. By going through these Integrals question answers, you can strengthen your foundation and improve your performance in Class 12 Mathematics. Whether you’re revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.
The anti derivative of sin 2x is a function of x whose derivative is sin 2x.
It is known that,
\begin{align} \frac {d}{dx} (cos 2x) = 2 sin2x \end{align}
⇒ \begin{align} sin 2x =-\frac {1}{2} \frac {d}{dx}(cos 2x) \end{align}
∴ \begin{align} sin 2x = \frac {d}{dx}\left(-\frac {1}{2}cos 2x\right) \end{align}
Therefore, the anti derivative of sin2x is
\begin{align} sin 2x \;is -\frac {1}{2}cos 2x \end{align}
\begin{align} \int \left(\sqrt{x} - \frac {1}{\sqrt{x}}\right)^2 .dx\end{align}
\begin{align} =\int \left(x + \frac {1}{x} - 2\right) .dx\end{align}
\begin{align} =\int x .dx + \int \frac {1}{x} . dx - 2\int 1. dx\end{align}
\begin{align} =\frac{x^2}{2} + \log\left(\left|x\right|\right) - 2x + C\end{align}
\begin{align} \int \frac{x^3 + 5x^2 - 4}{x^2} . dx\end{align}
\begin{align} =\int \left(x + 5 - 4x^{-2}\right) . dx\end{align}
\begin{align} =\int x .dx + 5 \int 1.dx- 4 \int x^{-2} .dx\end{align}
\begin{align} =\frac {x^2}{2} + 5x + 4 \left(\frac{x^{-1}}{-1}\right) + C\end{align}
\begin{align} =\frac {x^2}{2} + 5x + \frac{4}{x} + C\end{align}
\begin{align} \int \frac{x^3 + 3x + 4}{\sqrt{x}} . dx\end{align}
\begin{align} =\int \left(x^\frac{5}{2} + 3x^\frac{1}{2} + 4x^\frac{1}{2}\right) . dx\end{align}
\begin{align} =\frac{\left(x^{\displaystyle\frac72}\right)}{\displaystyle\frac72}+ \frac{3\left(x^{\displaystyle\frac32}\right)}{\displaystyle\frac32} + \frac{4\left(x^{\displaystyle\frac12}\right)}{\displaystyle\frac12} + C\end{align}
\begin{align} =\frac27\left(x^\frac72\right)+ 2\left(x^\frac32\right) + 8\left(x^\frac12\right) + C\end{align}
\begin{align} =\frac27\left(x^\frac72\right)+ 2\left(x^\frac32\right) + 8\left(\sqrt x\right) + C\end{align}
\begin{align} \int \frac{x^3 - x^2 + x - 1}{x-1} . dx\end{align}
On dividing, we obtain
\begin{align} =\int \left({x^2 + 1}\right) . dx \end{align}
\begin{align} =\int {x^2} . dx + \int 1 .dx \end{align}
\begin{align} =\frac {x^3}{3} + x + C \end{align}
\begin{align} \int\left(1-x\right).\sqrt {x}.dx\end{align}
\begin{align} =\int \left(\sqrt {x} - x^\frac32\right).dx\end{align}
\begin{align} =\frac{x^{\displaystyle\frac32}}{\displaystyle\frac32} - \frac{x^{\displaystyle\frac52}}{\displaystyle\frac52}+C \end{align}
\begin{align} =\frac23\;x^\frac32\; - \frac25\;x^\frac52\;+C \end{align}
\begin{align} \int\left(2x - 3Cosx + e^x\right).dx\end{align}
\begin{align} =2\int x .dx - 3\int Cosx .dx + \int e^x.dx\end{align}
\begin{align} =\frac{2x^2}{2} - 3(Sinx) + e^x + C\end{align}
\begin{align} =x^2 - 3Sinx + e^x + C\end{align}
\begin{align} \int\left(2x^2-3Sinx +5\sqrt {x}\right).dx\end{align}
\begin{align} =2\int x^2.dx-3\int Sinx.dx +5\int x^\frac12.dx \end{align}
\begin{align} =\frac{2x^3}{3} - 3(- Cos x) +5\left(\frac{x^{\displaystyle\frac32}}{\displaystyle\frac32}\right) + C \end{align}
\begin{align} =\frac{2}{3}.x^3 + 3Cos x + \frac{10}{3}.x^\frac{3}{2} + C\end{align}
\begin{align} \int sec x . \left(sec x + tan x\right) .dx \end{align}
\begin{align} =\int \left(sec^2 x + sec x . tan x\right) .dx \end{align}
\begin{align} =\int sec^2 x . dx + \int sec x . tan x .dx \end{align}
\begin{align} = tan x + sec x + C \end{align}
\begin{align} \int \frac {sec^2 x}{Coses^2 x} . dx\end{align}
\begin{align} =\int \left(\frac{\frac {1}{Cos^2 x}}{\frac{1}{sin^2 x}}\right) . dx\end{align}
\begin{align} =\int \left(\frac{Sin^2x}{Cos^2x}\right) . dx\end{align}
\begin{align} =\int tan^2 x . dx\end{align}
\begin{align} =\int \left(sec^2x - 1\right) . dx\end{align}
\begin{align} =\int sec^2x . dx - \int 1. dx\end{align}
\begin{align} = tanx - x + C\end{align}
The anti derivative of cos 3x is a function of x whose derivative is cos 3x.
It is known that,
\begin{align} \frac {d}{dx} (sin 3x) = 3 cos3x \end{align}
⇒ \begin{align} cos 3x =\frac {1}{3} \frac {d}{dx}(sin 3x) \end{align}
∴ \begin{align} cos 3x = \frac {d}{dx}\left(\frac {1}{3}sin 3x\right) \end{align}
Therefore, the anti derivative of cos3x is
\begin{align} sin 2x \;is \frac {1}{3}sin 3x \end{align}
\begin{align} \int \left(\frac {2-3sin x}{cos^2 x}\right) . dx\end{align}
\begin{align} =\int \left(\frac {2}{cos^2 x} - \frac{3sinx}{cos^2x}\right) . dx\end{align}
\begin{align} =2\int sec^2 x .dx - 3 \int tan x . sec x. dx\end{align}
\begin{align} =2 tan x - 3 sec x + C\end{align}
\begin{align} \int\left(\sqrt x + \frac {1}{\sqrt x}\right).dx \end{align}
\begin{align}= \int x^\frac{1}{2}.dx + \int x^\frac{-1}{2}.dx \end{align}
\begin{align}= \left(\frac {x^\frac{3}{2}}{\frac{3}{2}}\right) + \left(\frac {x^\frac{1}{2}}{\frac{1}{2}}\right) + C\end{align}
\begin{align}= \frac {2}{3} . x^{\frac{3}{2}}+ 2x^\frac{1}{2} + C\end{align}
Hence, the Correct Answer is C.
It is given that,
\begin{align} \frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4}\end{align}
∴ Anti derivative of
\begin{align} 4x^3 - \frac{3}{x^4} = f(x)\end{align}
∴ \begin{align} f(x)= \int \left(4x^3 - \frac{3}{x^4}\right).dx\end{align}
\begin{align} f(x)= 4\int x^3.dx - 3\int {x^{-4}}.dx\end{align}
\begin{align} f(x)= 4\left(\frac {x^4}{4}\right) - 3\left(\frac {x^{-3}}{-3}\right) + C\end{align}
∴ \begin{align} f(x)= x^4 + \frac{1}{x^3} + C\end{align}
Also, f(2) = 0
∴ \begin{align} f(2) =\left(2\right)^4 + \frac{1}{\left(2\right)^3} + C = 0 \end{align}
=> \begin{align} 16 + \frac{1}{8} + C = 0 \end{align}
=> \begin{align} C = -\left(16 + \frac{1}{8}\right) \end{align}
=> \begin{align} C = \frac{-129}{8} \end{align}
∴ \begin{align} f(x)= x^4 + \frac{1}{x^3} -\frac{129}{8} \end{align}
Hence, the correct answer is A.
The anti derivative of e2x is a function of x whose derivative is e2x.
It is known that,
\begin{align} \frac {d}{dx} (e^{2x}) = 2e^{2x} \end{align}
⇒ \begin{align} e^{2x} =\frac {1}{2} \frac {d}{dx}(e^{2x}) \end{align}
∴ \begin{align} e^{2x} = \frac {d}{dx}\left(\frac {1}{2}e^{2x}\right) \end{align}
Therefore, the anti derivative of e2x
\begin{align} e^{2x} \;is \frac {1}{2}e^{2x} \end{align}
The anti derivative of (ax + b)2 is a function of x whose derivative is (ax + b)2.
It is known that,
\begin{align} \frac {d}{dx} ((ax+b)^3) = 3a(ax+b)^2 \end{align}
⇒ \begin{align} (ax + b)^2 =\frac {1}{3a} \frac {d}{dx}(ax+b)^3 \end{align}
∴ \begin{align} (ax + b)^2 = \frac {d}{dx}\left(\frac {1}{3a}(ax + b)^3\right) \end{align}
Therefore, the anti derivative of (ax +b)2
\begin{align} (ax + B)^2 \;is \frac {1}{3a}(ax +b)^3 \end{align}
The anti derivative of sin 2x – 4e3x is the function of x whose derivative is sin 2x – 4e3x.
It is known that,
\begin{align} \frac {d}{dx} \left(-\frac{1}{2}cos 2x – \frac {4}{3} e^{3x}\right) = sin2x – 4e^{3x} \end{align}
Therefore, the anti derivative of (sin 2x – 4e3x) is \begin{align} \left(-\frac{1}{2}cos 2x – \frac {4}{3} e^{3x}\right) \end{align}
\begin{align} \int \left(4e^{3x} + 1\right).dx \end{align}
\begin{align} =4\int e^{3x}.dx + \int 1.dx \end{align}
\begin{align} =4\left(\frac {e^{3x}}{3}\right) + x + C \end{align}
\begin{align} =\frac {4}{3} e^{3x} + x + C \end{align}
\begin{align} \int x^2\left(1 - \frac{1}{x^2}\right).dx \end{align}
\begin{align} =\int \left(x^2 - 1\right).dx \end{align}
\begin{align} =\int x^2.dx - \int1.dx \end{align}
\begin{align} =\frac{x^3}{3} - x + C \end{align}
\begin{align} \int \left({a}{x^2} + bx + c\right) .dx\end{align}
\begin{align} =a\int {x^2}.dx + b\int x.dx + c\int 1.dx \end{align}
\begin{align} =a\left(\frac {x^3}{3}\right) + b\left(\frac {x^2}{2}\right) + cx + C\end{align}
\begin{align} \int \left({2}{x^2} + e^x\right) .dx\end{align}
\begin{align} =2\int {x^2}.dx + \int e^x.dx \end{align}
\begin{align} =2\left(\frac {x^3}{3}\right) +e^x + C\end{align}
\begin{align} =\frac {2}{3}.x^3 +e^x + C\end{align}
Join thousands of students who have improved their academic performance with our comprehensive study resources.