A uniformly charged conducting sphere of | Class 12 Physics Chapter Electric Charges and Field, Electric Charges and Field NCERT Solutions

Question:

A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 μC/m2.

(a) Find the charge on the sphere.

(b) What is the total electric flux leaving the surface of the sphere?

Answer:

(a) Diameter of the sphere, d = 2.4 m

Radius of the sphere, r = 1.2 m

Surface charge density, = 80.0 μC/m2 = 80 × 10−6 C/m2

Total charge on the surface of the sphere,

Q = Charge density × Surface area

=

= 80 × 10−6 × 4 × 3.14 × (1.2)2

= 1.447 × 10−3 C

Therefore, the charge on the sphere is 1.447 × 10−3 C.

(b) Total electric flux () leaving out the surface of a sphere containing net charge Q is given by the relation,

Where, ∈0 = Permittivity of free space

0  = 8.854 × 10−12 N−1C2 m−2

Q = 1.447 × 10−3 C

= 1.63 × 108 N C−1 m2

Therefore, the total electric flux leaving the surface of the sphere is 1.63 × 108 N C−1 m2.


Study Tips for Answering NCERT Questions:

NCERT questions are designed to test your understanding of the concepts and theories discussed in the chapter. Here are some tips to help you answer NCERT questions effectively:

  • Read the question carefully and focus on the core concept being asked.
  • Reference examples and data from the chapter when answering questions about Electric Charges and Field.
  • Review previous year question papers to get an idea of how such questions may be framed in exams.
  • Practice answering questions within the time limit to improve your speed and accuracy.
  • Discuss your answers with your teachers or peers to get feedback and improve your understanding.

Comments

  • Steven
  • 2019-11-24 07:32:59

Thank you it was really useful


Comment(s) on this Question

Welcome to the NCERT Solutions for Class 12 Physics - Chapter . This page offers a step-by-step solution to the specific question from Excercise 1 , Question 22: A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 80.0 μC/m....