equilibriumWHERE cd.courseId=2 AND cd.subId=9 AND chapterSlug='equilibrium' and status=1SELECT ex_no,page_number,question,question_no,id,chapter,solution FROM question_mgmt as q WHERE courseId='2' AND subId='9' AND chapterId='48' AND ex_no!=0 AND status=1 ORDER BY ex_no,CAST(question_no AS UNSIGNED) CBSE Class 11 Free NCERT Book Solution for Chemistry

Notice: Undefined variable: page_banner in /var/www/html/saralstudy/ss_new/web/chapter.php on line 120

Chapter 7 : Equilibrium


From this chapter, you will learn about the identification of the dynamic nature of equilibrium involved in physical and chemical processes along with the characteristics of equilibria. It also states the law of equilibrium. You will also learn about the expression for equilibrium constants and will also be able to establish relationships between them. It also gives explanations about various factors that affect the equilibrium state of reaction. It also gives classification of acids and bases as weak or strong in terms of their ionization constants. It also provides an explanation of dependence of degree of ionization on concentration of the electrolyte and that of the common ion. Description of pH scale for representing hydrogen ion concentration is also given. Explanation of ionization of water and its dual role as acid and base is also given. Description of ionic product and calculation of solubility product constant is also mentioned.

Exercise 1 ( Page No. : 238 )
Q:
A:

Vapour pressure is the pressure exerted by the vapour in equilibrium with the liquid at a fixed temperature.

(a) If the volume of the container is suddenly increased, then the vapour pressure would decrease initially. This is because the amount of vapour remains the same, but the volume increases suddenly. As a result, the same amount of vapour is distributed in a larger volume.

(b) Since the temperature is constant, the rate of evaporation also remains constant. When the volume of the container is increased, the density of the vapour phase decreases. As a result, the rate of collisions of the vapour particles also decreases. Hence, the rate of condensation decreases initially.

(c) When equilibrium is restored finally, the rate of evaporation becomes equal to the rate of condensation. In this case, only the volume changes while the temperature remains constant. The vapour pressure depends on temperature and not on volume. Hence, the final vapour pressure will be equal to the original vapour pressure of the system.


Exercise 1 ( Page No. : 238 )
Q:
A:

The equilibrium constant (Kc) for the give reaction is:

Kc   =   [SO3]2  [SO2]2 [O2]

      =  (1.90)2 M2  / (0.60)2 (0.8321) M3

      = 12.239 M-1 Approx.

Hence, Kfor the equilibrium is 12.239 M-1

 


Exercise 1 ( Page No. : 238 )
Q:
A:

Partial pressure of I atoms,

p =  ptotal x 40/100

    =  105 x 40/100 

    =  4 x 104 Pa 

Partial pressure of I2 molecules,

p  =  ptotal x 60/100

       =  105 x 60/100 

       =  6 x 104 Pa 

Now, for the given reaction,

Kp  = (pI)2  / pI2

     =  (4 x 104 ) 2 Pa2  / 6 x 104 Pa

     =  2.67 x 104 Pa

 

 

 


Exercise 1 ( Page No. : 238 )

Exercise 1 ( Page No. : 238 )
Q:
A:

(a) The relation between Kp and Kc is given as:

Kp = Kc (RT)Δn

(a) Here, Δn = 3 - 2 = 1

R = 0.0831 barLmol-1K-1

T = 500 K

Kp = 1.8 x 10-2

Now, Kp = Kc (RT)Δn

⇒ Kc  = 1.8 x 10-2  /  (0.0831x500)

         = 4.33 x 10-4 (approx.)

 

(b) Here, Δn = 2 - 1 = 1

R = 0.0831 barLmol-1K-1

T = 1073 K

K= 167

Now, Kp = Kc (RT)Δn

⇒ Kc  = 167 / (0.0831x1073)

         = 1.87 (approx.)


Exercise 1 ( Page No. : 238 )
Q:
A:

It is given that Kfor the forward reaction is 6.3 × 1014  

Then, K for the reverse reaction will be,

K = 1 / Kc

     = 1 /  6.3 × 1014  

     = 1.59 x 10-15


Exercise 1 ( Page No. : 238 )
Q:
A:

: For a pure substance (both solids and liquids),

Pure Substance  = Number of moles  /  Volume

                         = Mass/Molecular Mass / Volume

                         = Mass /  Volume x Molecular Mass

                         = Density /  Molecular Mass

Now, the molecular mass and density (at a particular temperature) of a pure substance is always fixed and is accounted for the equilibrium constant. Therefore, the values of pure substances are not mentioned in the equilibrium constant expression.


Exercise 1 ( Page No. : 238 )
Q:
A:

Let the concentration of N2O at equilibrium be x. The given reaction is:

                                2N2 (g)         +        O2 (g)               2N2O (g)

Intial Concentration:   0.482 mol            0.933 mol                  0 mol

At equilibrium           (0.482-x) mol        (0.933 -x) mol            x mol

Therefore, at equilibrium, in the 10 L vessel:

N2 = 0.482-x / 10

O2 = 0.933-x/2  / 10

N2O = x / 10

The value of equilibrium constant i.e.Kc = 2.0 × 10-37 is very small. Therefore, the amount of N2 and O2 reacted is also very small. Thus, x can be neglected from the expressions of molar concentrations of N2 and O2.

Then,

N2  =  0.482/10 = 0.0482 molL-1 and O2 = 0.933/10 = 0.0933 molL-1

Now,


Exercise 1 ( Page No. : 238 )
Q:
A:

The given reaction is:

2NO (g)         +           Br2 (g)                 2NOBr (g)

2 mol                         1 mol                        2 mol    

Now, 2 mol of NOBr are formed from 2 mol of NO. Therefore, 0.0518 mol of NOBr are formed from 0.0518 mol of NO.

Again, 2 mol of NOBr are formed from 1 mol of Br.

Therefore, 0.0518 mol of NOBr are formed from 0.0518/2 mol of Br, or 0.0259 mol of NO.

The amount of NO and Br present initially is as follows:

[NO] = 0.087 mol [Br2] = 0.0437 mol

Therefore, the amount of NO present at equilibrium is: [NO] = 0.087 - 0.0518 = 0.0352 mol

And, the amount of Br present at equilibrium is: [Br2] = 0.0437-0.0259 = 0.0178 mol


Exercise 1 ( Page No. : 238 )
Q:
A:

For the given reaction,

Δn = 2 - 3 =-1

T = 450 K

R = 0.0831 bar L bar K-1 mol-1

Kp = 2.0 × 1010 bar -1

We know that,

Kp =  Kc (RT)Δn


Exercise 1 ( Page No. : 238 )
Q:
A:

The initial concentration of HI is 0.2 atm. At equilibrium, it has a partial pressure of 0.04 atm. Therefore, a decrease in the pressure of HI is 0.2 - 0.04 = 0.16. The given reaction is:

                                  2HI (g)                        H2 (g)       +        I2 (g)

Intial concentration       0.2 atm                           0                         0

At equilibrium              0.04 atm                       0.16/2                   2.15/2

Therefore,

 

Therefore, Hence, the value of Kp for the given equilibrium is 4.0.


Exercise 1 ( Page No. : 238 )
Q:
A:

The given reaction is:

N2 (g) + 3H2 (g) 2NH3 (g)

The given concetration of various species is:

N2  = 1.57/20 molL-1

H2 = 1.92/20 molL-1

NH3 =  8.13/20 molL-1

Now, reaction quotient Qc is:

Qc  = (8.13/20)2  /  (1.57/20) (1.92/20)3

        = 2.4 x 10-3

Since,Qc ≠  Kc the reaction mixture is not at equilibrium.

Again, Qc >  Kc. Hence, the reaction will proceed in the reverse direction.


Exercise 1 ( Page No. : 238 )
Q:
A:

The balanced chemical equation corresponding to the given expression can be written as:

4NO(g)  + 6H2O(g)   ↔   4NH3(g)  + 5O2(g)


Exercise 1 ( Page No. : 238 )
Q:
A:

The given reaction is:

                                  H2O (g)   +  CO (g)  ↔   H2 (g)  +  CO2 (g)

Initial Concentration:     1/10 M       1/10 M           0              0

At equilibrium              1-0.4/10 M  1-0.4/10 M  0.4/10M 0.4/10M

                                = 0.06M       0.06M         0.04M     0.04M

Therefore, the equilibrium constant for the reaction,

 


Exercise 1 ( Page No. : 238 )
Q:
A:

It is given that equilibrium constant Kc for the reaction

H2 (g) + I2 (g) 2HI (g)  is 54.8.

 

Therefore, at equilibrium, the equilibrium constant K'cfor the reaction

2HI (g) H2 (g) + I2 (g)    will be  1/54.8

 

HI  =  0.5 molL-1

Let the concentrations of hydrogen and iodine at equilibrium be x molL-1 .

Hence, at equilibrium,


Exercise 1 ( Page No. : 238 )
Q:
A:

The given reaction is:
                                 2ICl (g)  ↔  I2 (g) + Cl2 (g)
Initial conc.                0.78 M           0           0
At equilibrium         (0.78 - 2x) M     x M        x M

Now we can write, Kc  =  I x Cl2   /  (ICl)2  


Exercise 1 ( Page No. : 238 )
Q:
A:

Let p be the pressure exerted by ethene and hydrogen gas (each) at equilibrium.

Now, according to the reaction,

                  C2H6 (g) C2H4 (g) + H2 (g)

Initial conc.   4.0atm            0           0
At equilibrium 4.0-p             p            p

We can write,

Hence, at equilibrium,

C2H6  - 4  - p  = 4 -.038

= 3.62 atm


Exercise 1 ( Page No. : 238 )

Exercise 1 ( Page No. : 238 )
Q:
A:

Let the concentrations of both PCl3 and Cl2 at equilibrium be x molL-1. The given reaction is:

                            PCl5 (g)         ↔    PCl3 (g)   +   Cl2(g)

at equilibrium       0.5x10-1molL-1         xmolL-1     xmolL-1

it is given that the value of equilibrium constant, Kc is 8.3x10–3

Now we can write the expression for equilibrium as:


Exercise 1 ( Page No. : 238 )

Exercise 1 ( Page No. : 238 )
Q:
A:

The given reaction is:

                               N2 (g)     +   3H2 (g)  ↔  2NH3 (g)

at a particular time: 3.0molL-1  2.0 molL-1     0.5molL-1

Now, we know that,

Qc =  [NH3]2 / [N2][H2]3

      =  (0.5)2  / (3.0)(2.0)3

      = 0.0104

It is given that Kc = 0.061

Since,Qc ≠  Kc, the reaction mixture is not at equilibrium.

Again, Qc <  Kc, the reaction will proceed in the forward direction to reach equilibrium.


Exercise 1 ( Page No. : 238 )
Q:
A:

Let the amount of bromine and chlorine formed at equilibrium be x. The given reaction is:

                      2BrCl (g) Br2 (g) + Cl2 (g)

Initial Conc.     3.3x10-3          0            0

at equilibrium   3.3x10-3 -2x    x            x

Now, we can write,

Kc = [Br2][Cl2]  /  [BrCl]2

⇒  (x) x (x) /  (3.3x10-3 -2x)= 32

⇒  x  /  (3.3x10-3 -2x)  = 5.66

⇒ x  =  18.678x10-3 - 11.32x

⇒ x  + 11.32x = 18.678x10-3

⇒ 12.32x = 18.678x10-3

⇒ x = 1.5 x 10-3

Therefore, at equilibrium,

[BrCl] =  3.3x10-3  -  (2 x 1.5 x 10-3)

         = 3.3x10-3  -   3.0x10-3

            = 0.3  x 10-3

           = 3.0 x 10-4 mol L-1


Exercise 1 ( Page No. : 238 )
Q:
A:

Let the total mass of the gaseous mixture be 100 g.

Mass of CO = 90.55 g

And, mass of CO2 = (100 - 90.55) = 9.45 g

Now, number of moles of CO, nco = 90.55/28 = 3.234 mol

Number of moles of CO2,  nco2 = 9.45/44 = 0.215 mol

Partial pressure of CO,

For the given reaction,

Δn = 2 - 1 = 1

we know that,

Kp  =  Kc  (RT)Δn

14.19 = Kc  (0.082 x 1127)1

⇒ Kc = 14.19 / 0.082 x 1127

= 0.154 (arrpox.)


Exercise 1 ( Page No. : 238 )
Q:
A:

(a) For the given reaction,

ΔG° = ΔG°( Products) - ΔG°( Reactants)

ΔG° = 52.0 -{87.0 + 0} = -35.0 kJ mol-1

(b) We know that,

ΔG° = RT log Kc

ΔG° = 2.303 RT log Kc

Hence, the equilibrium constant for the given reaction Kc is 1.36 × 106


Exercise 1 ( Page No. : 238 )
Q:
A:

(a) The number of moles of reaction products will increase. According to Le Chatelier's principle, if pressure is decreased, then the equilibrium shifts in the direction in which the number of moles of gases is more. In the given reaction, the number of moles of gaseous products is more than that of gaseous reactants. Thus, the reaction will proceed in the forward direction. As a result, the number of moles of reaction products will increase.

(b) The number of moles of reaction products will decrease.

(c) The number of moles of reaction products remains the same.


Exercise 1 ( Page No. : 238 )
Q:
A:

The reactions given in (i), (iii), (iv), (v), and (vi) will get affected by increasing the pressure.

The reaction given in (iv) will proceed in the forward direction because the number of moles of gaseous reactants is more than that of gaseous products.

The reactions given in (i), (iii), (v), and (vi) will shift in the backward direction because the number of moles of gaseous reactants is less than that of gaseous products.


Exercise 1 ( Page No. : 238 )
Q:
A:

Given,kp for the reaction i.e., H2(g) + Br2(g)2HBr(g)  is 1.6 ×105

Therefore, for the reaction

2HBr(g) H2(g) + Br2(g)

the equilibrium constant will be,

K'p = 1/Kp

     = 1/1.6 ×105

      = 6.25x10-6

Now, let p be the pressure of both H2 and Br2 at equilibrium.

                    2HBr(g) H2(g) + Br2(g)

Initial Conc.      10             0         0

at equilibrium 10-2p           p         p

Now, we can write,


Exercise 1 ( Page No. : 238 )
Q:
A:

(a) For the given reaction,

 

(b) (i) According to Le Chatelier's principle, the equilibrium will shift in the backward direction.

(ii) According to Le Chatelier's principle, as the reaction is endothermic, the equilibrium will shift in the forward direction.

(iii) The equilibrium of the reaction is not affected by the presence of a catalyst. A catalyst only increases the rate of a reaction. Thus, equilibrium will be attained quickly.


Exercise 1 ( Page No. : 238 )
Q:
A:

(a) According to Le Chatelier's principle, on addition of H2, the equilibrium of the given reaction will shift in the forward direction.

(b) On addition of CH3OH, the equilibrium will shift in the backward direction.

(c) On removing CO, the equilibrium will shift in the backward direction.

(d) On removing CH3OH, the equilibrium will shift in the forward direction.


Exercise 1 ( Page No. : 238 )
Q:
A:

(c) (i) Kc would remain the same because in this case, the temperature remains the same.

(ii) Kc is constant at constant temperature. Thus, in this case, Kc would not change.

(iii) In an endothermic reaction, the value of Kc increases with an increase in temperature. Since the given reaction in an endothermic reaction, the value of Kc will increase if the temperature is increased.


Exercise 1 ( Page No. : 238 )
Q:
A:

Let the partial pressure of both carbon dioxide and hydrogen gas be p. The given reaction is:

                        CO (g)   +    H2O (g)        CO2 (g)    +   H2 (g)

Initial Conc.      4.0 bar          4.0 bar             0                   0

At equilibrium    4.0-p           4.0-p                 p                   p

It is given that Kp  =  10.1

Now,

Hence, at equilibrium, the partial pressure of H2 will be 3.04 bar.


Exercise 1 ( Page No. : 238 )

Exercise 1 ( Page No. : 238 )
Q:
A:

The given reaction is:

3O2 (g) 2O3 (g)

Then, Kc =  [O3 (g)]2  /  [O2 (g)]3

It is given that Kc =  2.0 ×10–50  and O2 (g) = 1.6 ×10–2

Then we have,

2.0 ×10–50  =  [O3 (g)]2   / [1.6 ×10–2 ]3

⇒  [O3 (g)]2 = [2.0 ×10–50] x [1.6 ×10–2 ]3

⇒ [O3 (g)]2   = 8.192 x 10-56

⇒ O3 (g)     =   2.86x10-28 M

Hence, the concentration of O2 (g)  = 2.86x10-28 M


Exercise 1 ( Page No. : 238 )
Q:
A:

Let the concentration of methane at equilibrium be x.

                         CO(g)  +  3H2(g)    CH4(g) +  H2O(g)

At equilibrium    0.3/1 M    0.1/1 M       x             0.02/1 M

It is given that Kc= 3.90.

Therefore,

Kc  =  [CH4(g)] [ H2O(g)]  /  [ CO(g) ] [H2(g)]3

⇒  [x] [0.02]  / (0.3)  (0.1)3  = 3.90

⇒ x  = (3.90) (0.3)  (0.1)/ [0.02]

⇒ x = 0.00117 / 0.02

      = 0.0585 M

      = 5.85 x 10-2

Hence, the concentration of CH4 at equilibrium is 5.85 × 10-2 M.


Exercise 1 ( Page No. : 238 )
Q:
A:

A conjugate acid-base pair is a pair that differs only by one proton. The conjugate acid-base for the given species is mentioned in the table below.

Species Conjugate acid-base
HNO2 NO-2 (base)
CN HCN (Acid)
HClO4 ClO-4 (base)
F HF (Acid)
OH H2O(Acid) / O2-  (base)
CO2–3 HCO3 (Acid)
S- HS- (Acid)

Exercise 1 ( Page No. : 238 )
Q:
A:

Lewis acids are those acids which can accept a pair of electrons. For example, BF3, H+, and NH+4 are Lewis acids.


Exercise 1 ( Page No. : 238 )
Q:
A:

The table below lists the conjugate bases for the given Bronsted acids.

Bronsted acid Conjugate base
HF F-
H2SO4 HSO-4
HCO3 CO2-3

 


Exercise 1 ( Page No. : 238 )
Q:
A:

The table below lists the conjugate acids for the given Brönsted bases.

Bronsted base Conjugate acid
NH2 NH3
NH NH+4
HCOO HCOOH

 


Exercise 1 ( Page No. : 238 )
Q:
A:

The table below lists the conjugate acids and conjugate bases for the given species.

Species Conjugate acid Conjugate base
H2O H3O+ OH-
HCO3 H2CO3 CO2-3
HSO-4 H2SO4 SO2-4
NH3 NH+4 NH-2

 


Exercise 1 ( Page No. : 238 )
Q:
A:

(a) OH- is a Lewis base since it can donate its lone pair of electrons.

(b) F- is a Lewis base since it can donate a pair of electrons.

(c) H+ is a Lewis acid since it can accept a pair of electrons.

(d) BCl3 is a Lewis acid since it can accept a pair of electrons.


Exercise 1 ( Page No. : 238 )
Q:
A:

Given that:

[H+]  =  3.8 × 10–3

∴ pH value of soft drink

= -log [H+

=  -log [3.8 × 10–3

= -log [3.8]  - log[10–3]

= -log [3.8]  +  3

= -0.58 + 3

=  2.42


Exercise 1 ( Page No. : 238 )
Q:
A:

Given that:

pH = 3.76

It is known that,

pH = -log [H+]

⇒  log [H+]  = -pH

⇒ [H+] = antilog (-pH)

          = antilog(-3.76)

          = 1.74x10-4 M

Hence, the concentration of hydrogen ion in the given sample of vinegar is 1.74 × 10-4 M.


Exercise 1 ( Page No. : 238 )
Q:
A:

It is known that,

Kb  =  Kw / Ka

Given

Ka of HF = 6.8 × 10-4

Hence, Kb of its conjugate base F-  =  Kw / Ka

= 10-14 / 6.8 × 10-4

= 1.5 x 10-11

Given, Ka of HCOOH = 1.8 × 10-4

Hence, Kb of its conjugate base HCOO= Kw / Ka

= 10-14 / 1.8 × 10-4

= 5.6x10-11

Given, Ka of HCN = 4.8 × 10-9

Hence, Kb of its conjugate base CN- = Kw / Ka

= 10-14 / 4.8 × 10-9

= 2.8 x 10-6


Exercise 1 ( Page No. : 238 )
Q:
A:

Ionization of phenol:

                    C6H5OH + H2O  ↔  C6H5O- +  H3O+

Initial Conc.          0.05                    0              0

At equilibrium    0.05-x                    x               x

Ka   =  [C6H5O- x  H3O+]   /  C6H5OH

Ka   =  x x  / 0.05-x

Ka   =  x2  / 0.05-x

As the value of the ionization constant is very less, x will be very small. Thus,

we can ignore x in the denominator

Now, let α be the degree of ionization of phenol in the presence of 0.01 M C6H5ONa.

 


Exercise 1 ( Page No. : 238 )
Q:
A:

(i) To calculate the concentration of HS- ion:

Case I (in the absence of HCl):

Let the concentration of HS- be x M.

             H2↔  H+  +  HS-

Ci          0.1         0         0

C      0.1-x         x         x

Then Ka1  = [H+ ] [ HS-]  /  H2S

9.1 × 10–8  = xx / 0.1-x

(9.1 × 10–8)  (0.1-x) = x2

Taking 0.1 - x M ; 0.1M, we have

(9.1 × 10–8)  (0.1) = x2

9.1 x 10-9  = x2

Case II (in the presence of HCl):

In the presence of 0.1 M of HCl, let [HS-] be y M.

Then,       H2↔  H+  +  HS-

Ci          0.1          0         0

C       0.1-y         y         y

Also,   HCI    ↔   H+   +   CI-

                         0.1       0.1

Now,  Ka1  =  [H+ ] [ HS-]  /  H2S

Ka1   =   [y] [0.1+y] / [0.1-y]

9.1 × 10–8  =  y x 0.1  / 0.1              (∵ 0.1-y; 0.1M) (and 0.1+y; 0.1M)

9.1 × 10–8  =  y

⇒ [ HS-]  = 9.1 × 10–8

 

(ii) To calculate the concentration of [S2-]:

Case I (in the absence of 0.1 M HCl):

HS-    ↔   H+   + S2-

HS   =  9.54 x 10-5 M  (From first ionization, case I)

Let S2- be X.

Also, [H+]  =  9.54 x 10-5 M  (From first ionization, case I)

Ka2  =  (9.54 x 10-5) (X)  / (9.54 x 10-5)

       1.2x10-13  =  X  = S2-

Case II (in the presence of 0.1 M HCl):

Again, let the concentration of HS- be X' M.

 


Exercise 1 ( Page No. : 238 )
Q:
A:

1) CH3COOH        CH3COO-  + H+     Ka = 1.74x10-5

2) H2O + H2O       H3O+   +   OH-        Kw  = 1.0x10-14

Since Ka > Kw

         CH3COOH  + H2O       CH3COO-  +    H3O+

Ci  =  0.05                                     0                   0

       0.05- 0.05α                     0.05α             0.05α  

ka =  0.05α x   0.05α  /   0.05- 0.05α  

= 0.05α x   0.05α  /   0.05 (1-α)

= 0.05α2  /  (1-α)

⇒ 1.74x10-5  =  0.05α2  /  (1-α)

⇒ 1.74x10-5   -  1.74x10-5 α  =  0.05α2 

⇒ 0.05α2  +    1.74x10-5 α  -  1.74x10-5 =0

D =  b2 - 4ac

   = (1.74x10-5 )2 - 4 (0.05) (1.74x10-5)

   = 3.02x10-25  + 0.348x10-5

Method 2:

Degree of Dissociation,

CH3COOH      CH3COO- + H+

Thus, concentration of CH3COO- = c.α 

= 0.05x1.86x10-2

= 0.93x10-2

=.00093M

Since [oAc-] = [H+]

[H+] = .00093 = 0.093x10-2

pH = -log[H+]

     =  -log (0.93x10-2)

∴ pH = 3.03

Hence, the concentration of acetate ion in the solution is 0.00093 M and its Ph is 3.03.

 


Exercise 1 ( Page No. : 238 )
Q:
A:

Let the organic acid be HA.

⇒ HA H + A-

Concentration of HA = 0.01 M

pH = 4.15

-log[H+] = 4.15

[H+]  = 7.08x10-5

Now, Ka = [H+] [A-]  / [HA] 

[H+]  = [A-]  = 7.08x10-5

[HA]  = 0.01

Then,

Ka =  7.08x10-5 x 7.08x10-5  /  0.01

Ka =  5.01x10-7

pKa = -log Ka

        =  -log(5.01x10-7)

pKa = 6.3001

 


Exercise 1 ( Page No. : 238 )
Q:
A:

(i) 0.003MHCl:

H2O   +   HCl  ↔  H3O+   +   Cl-

Since HCl is completely ionized,

[H3O+] = [ HCl]

⇒ [H3O+] = = 0.003

Now

pH = -log [H3O+]  = -log (0.003)

= 2.52

Hence, the pH of the solution is 2.52.

 

(b) 0.005 M NaOH

NaOH(aq)  Na+(aq) + HO-(aq)

[NaOH] =  [ HO-]

⇒  [ HO-]  = 0.05

pOH =  -log[ HO-]  = -log (0.05)

= 2.30

∴ pH  = 14 - 2.30 = 11.70

Hence, the pH of the solution is 11.70.

 

(c) 0.002 M HBr

HBr  + H2↔  H3O+ + Br-

[HBr] = [H3O+]

⇒  [H3O+] = 0.002

∴ pH = -log [H3O+]  = -log (0.002)

= 2.69

Hence, the pH of the solution is 2.69.

 

(d) 0.002 M KOH

KOH(aq)  ↔  K+(aq)  + OH-(aq)

[OH-]  =  [KOH]

⇒ [OH-] = 0.002

Now pOH  = -log[OH-]  = -log (0.002)

= 2.69

∴ pH = 14-2.69  =  11.31

Hence, the pH of the solution is 11.31.


Exercise 1 ( Page No. : 238 )
Q:
A:

For 2g of TlOH dissolved in water to give 2 L of solution:

[TIOH(aq)] = 2/2 g/L

= 2/2 x 1/221 M

= 1/221 M

TIOH(aq)  →  TI+(aq)  +  OH-(aq)

OH-(aq)  =  TIOH(aq) = 1/221M

Kw  =  [H+] [OH-]

10-14 = [H+] [1/221]

[H+] = 221x10-14

⇒ pH  =  -log [H+]  = -log ( 221x10-14)

= 11.65

 

(b) For 0.3 g of Ca(OH)2 dissolved in water to give 500 mL of solution:

Ca(OH)2  →   Ca2+ + 2OH-

[Ca(OH)2]  = 0.3x1000/500 = 0.6M

OH-(aq) = 2 x [Ca(OH)2(aq)] = 2 x 0.6 = 1.2M

[H+]  = Kw  /  OH-(aq)

= 10-14/1.2 M

= 0.833 x 10-14

pH  =  -log(0.833 x 10-14)

= -log(8.33 x 10-13)

= (-0.902 + 13)

= 12.098

 

(c) For 0.3 g of NaOH dissolved in water to give 200 mL of solution:

NaOH →  Na +(aq)  + OH-(aq)

[NaOH] = 0.3 x 1000/200 = 1.5M

[OH-(aq)] = 1.5M

Then [H+]  =  10-14 / 1.5

= 6.66 x 10-13

pH  =  -log ( 6.66 x 10-13)

= 12.18

 

(d) For 1mL of 13.6 M HCl diluted with water to give 1 L of solution:

13.6 x 1 mL       =   M2 x 1000 mL

(Before dilution)   (after dilution)

13.6 x 10-3 =  M2 x 1L

M2  =  1.36 x 10-2

[H+] = 1.36 × 10-2

pH = - log (1.36 × 10-2)

= (- 0.1335 + 2)

= 1.866 = 1.87


Exercise 1 ( Page No. : 238 )
Q:
A:

Degree of ionization, α = 0.132

Concentration, c = 0.1 M

Thus, the concentration of H3O+ = c.α

= 0.1 × 0.132

= 0.0132

pH = -log [H+]

      = -log (0.0132)

     = 1.879 : 1.88

Now,

Ka  =  Cα2

      =  0.1 x (0.132)2

 Ka = 0.0017

pKα  = 2.75


Exercise 1 ( Page No. : 238 )
Q:
A:

c = 0.005

pH = 9.95

pOH = 4.05

pH = -log (4.05)

4.05 =  - log [OH-]

[OH-] = 8.91x 10-5

cα = 8.91x 10-5

α = 8.91x 10-5  /  5 x 10-3  =  1.782  x 10-2

Thus , Kb  =  cα2

= 0.005 x (1.782)2 x 10-4

= 0.005 x 3.1755 x 10-4

= 0.0158 x 10-4

Kb  =  1.58 x 10-6

PKb  =  -logKb 

= -log (1.58 x 10-6)

= 5.80

 


Exercise 1 ( Page No. : 238 )
Q:
A:

Kb  =   4.27 x 10-10

c  =  0.001M

pH  = ?

α  =  ?

Kb  =  cα2

4.27 x 10-10  = 0.001 x α2

4270 x 10-10 = α2

α = 65.34 x 10-4

Then (anion) = cα  = 0.001 x 65.34 x 10-4

= 0.65 x 10-5

pOH = -log ( 0.65 x 10-5)

= 6.187

pH  =  7.813

Now

Ka x Kb = Kw

 ∴ 4.27 x 10-10 x Ka = Kw

Ka  =  10-14 / 4.27 x 10-10

= 2.34 x 10-5

Thus, the ionization constant of the conjugate acid of aniline is 2.34 × 10-5


Exercise 1 ( Page No. : 238 )
Q:
A:

c =  0.05 M

pK=  4.74

pK= -log (Ka)

K=  1.82 x 10-5

When HCl is added to the solution, the concentration of H+ ions will increase. Therefore, the equilibrium will shift in the backward direction i.e., dissociation of acetic acid will decrease.

 

Case I: When 0.01 M HCl is taken.

Let x be the amount of acetic acid dissociated after the addition of HCl.

                               CH3COOH     ↔     H+    +   CH3COO-

Initial Conc.             0.05M                   0                0

After dissociation   0.05-x            0.01+x              x

As the dissociation of a very small amount of acetic acid will take place, the values i.e., 0.05 - x and 0.01 + x can be taken as 0.05 and 0.01 respectively.

Ka  =  [CH3COO-] [ H+/ [CH3COOH]

∴ Ka  = (0.01)  (x) / (0.05)

x  =   1.82 x 10-5  x(multiply) 0.05 /  0.01

x  =  1.82 x 10-3  x(multiply) 0.05

Now

α =  Amount of acid dissociated /  amount of acid taken

= 1.82 x 10-3  x 0.05  / 0.05

= 1.82 x 10-3

 

Case II: When 0.1 M HCl is taken.

Let the amount of acetic acid dissociated in this case be X. As we have done in the first case, the concentrations of various species involved in the reaction are:

[CH3COOH]  = 0.05 - X  : 0.05M

[CH3COO-] =  X

[ H+]   =   0.1+X ; 0.1M

Ka  =  [CH3COO-] [ H+/ [CH3COOH]

∴ Ka  = (0.1)  (X) / (0.05)

x  =   1.82 x 10-5  x(multiply) 0.05 /  0.1

x  =  1.82 x 10-4  x(multiply) 0.05

Now

α =  Amount of acid dissociated /  amount of acid taken

= 1.82 x 10-4  x 0.05  / 0.05

= 1.82 x 10-4


Exercise 1 ( Page No. : 238 )
Q:
A:

Kb  =  5.4x10-4

c =  0.02M

Now, if 0.1 M of NaOH is added to the solution, then NaOH (being a strong base) undergoes complete ionization.

NaOH(aq)        Na+(aq)   +  OH- (aq)

                          0.1M             0.1M

and

(CH3)2 NH  + H2O   ↔   (CH3)2 NH+2  +  O-H

0.02-x                                      x                 x

Then (CH3)2 NH+2   = x

[OH-]  =  x + 0.1 ; 0.1

⇒ Kb = [(CH3)2 NH+2 ] [OH-]   /   [CH3)2 NH]

5.4x10-4  =  x x 0.1 / 0.02

 x  =  0.0054

It means that in the presence of 0.1 M NaOH, 0.54% of dimethylamine will get dissociated.

 


Exercise 1 ( Page No. : 238 )
Q:
A:

a) Human muscle fluid 6.83:

pH = 6.83

pH = - log [H+]

∴6.83 = - log [H+]

[H+] =1.48 x 10-7 M

 

(b) Human stomach fluid, 1.2:

pH =1.2

1.2 = - log [H+]

∴[H+] = 0.063

 

(c) Human blood, 7.38:

pH = 7.38 = - log [H+]

∴ [H+] = 4.17 x 10-8 M

 

(d) Human saliva, 6.4:

pH = 6.4

6.4 = - log [H+]

[H+] = 3.98 x 10-7


Exercise 1 ( Page No. : 238 )
Q:
A:

The hydrogen ion concentration in the given substances can be calculated by using the given relation:

pH = -log [H+]

(i) pH of milk = 6.8

Since, pH = -log [H+]

6.8 = -log [H+]

log [H+] = -6.8

[H+] = anitlog(-6.8)

= 1.5x10-7M

 

(ii) pH of black coffee = 5.0

Since, pH = -log [H+]

5.0 = -log [H+]

log [H+] = -5.0

[H+] = anitlog(-5.0)

= 10-5M

 

(iii) pH of tomato juice = 4.2

Since, pH =-log [H+]

4.2 =-log [H+]

log [H+] = -4.2

[H+] = anitlog(-4.2)

= 6.31x10-5M

 

(iv) pH of lemon juice = 2.2

Since, pH = -log [H+]

2.2 = -log [H+]

log [H+] = -2.2

[H+] = anitlog(-2.2)

=6.31x10-3M

 

(v) pH of egg white = 7.8

Since, pH = -log [H+]

7.8 = -log[H+]

log[H+] = -7.8

[H+] = anitlog(-7.8)

= 1.58x10-8M


Exercise 1 ( Page No. : 238 )
Q:
A:

[KOH(aq)] = 0.561 / (1/5)g/L

= 2.805 g/L

= 2.805 x 1/56.11 M

= 0.05M

KOH(aq)  → K+(aq)  +  OH-(aq)

[OH-]  = 0.05M =  [K+]

[H-] [H+]  =  Kw

[H+] Kw / [OH-]

= 10-14 / 0.05 = 2x10-13 M

∴ pH = 12.70

 


Exercise 1 ( Page No. : 238 )
Q:
A:

Solubility of Sr(OH)2 = 19.23 g/L

Then, concentration of Sr(OH)2

= 19.23 / 121.63 M

= 0.1581 M

Sr(OH)2(aq) →  Sr2+(aq) + 2 (OH-)(aq)

∴Sr2+  = 0.1581M

[OH-] =  2 x 0.1581M = 0.3126 M

Now

Kw  =  [OH-] [H+]

10-14 / 0.3126  = [H+]

⇒ [H+] =  3.2 x 10-14

∴ pH = 13.495 = 13.50


Exercise 1 ( Page No. : 238 )
Q:
A:

Let the degree of ionization of propanoic acid be α.

Then, representing propionic acid as HA, we have:

HA     +    H2O      ↔      H3O+     +  A-

(0.05-0.0α) ≈ 0.05       0.05α     0.05α

K =  [H3O+]  [A-]  / [HA]

=  (0.05α)(0.05α)  /  0.05

= 0.05 α2

Then, [H3O+]  = 0.05α = 0.05 x 1.63 x 10-2  =  Kb . 15 x 10-4 M

∴ pH  =  3.09

In the presence of 0.1M of HCl, let α' be the degree of ionization.

Then, [H3O+]  = 0.01

[A-]  =  0.05α'

[HA]  =  0.05

Ka  =  0.01 x 0.05α'  / 0.05

⇒ 1.32 x 10-5 =  0.1 α'

α' =  1.32 x 10-3


Exercise 1 ( Page No. : 238 )
Q:
A:

c = 0.1 M

pH = 2.34

-log [H+] =  pH

-log [H+] = 2.34

[H+]  = 4.5 x 10-3

also

[H+]  = cα

4.5 x 10-3  =   0.1  α

α =  4.5 x 10-3  0.1

α  = 45 x 10-3 

Then,

Ka  =  cα2

= 0.1 (45 x 10-3)2

= 202.5 x  10-6

= 2.02 x 10-4

 


Exercise 1 ( Page No. : 238 )
Q:
A:

NaNO2 is the salt of a strong base (NaOH) and a weak acid (HNO2).

NO-2  +  H2↔   HNO2  +  OH-

Kh  =  [ HNO2 ] [ OH-]  / [NO-2]

⇒  Kw / ka  =  10-14 /  4.5 x 10-4  = 0.22 x 10-10

Now, If x moles of the salt undergo hydrolysis, then the concentration of various species present in the solution will be:

[NO-2 ]  = 0.04 - x ; 0.04

[ HNO2 ]  =  x

[ OH-]  =  x

Kh  =  x2 / 0.04 =  0.22 x 10-10

x2  =  0.0088 x 10-10

x  =  0.093 x 10-5

∴ [ OH-]  =  0.093 x 10-5M

[H3O+]  =  10-14 /  0.093 x 10-5  = 10.75 x 10-9M

⇒  pH  = -log(10.75 x 10-9)

= 7.96

Therefore, degree of hydrolysis

= x / 0.04  =  (0.093 x 10-5 ) / 0.04 =  2.325 x 10-5

 


Exercise 1 ( Page No. : 238 )
Q:
A:

Given,  pH  =  3.44

We know that

pH  =  -log [H+]

∴ [H+]  =  3.63x10-4

Then Kh  = ( 3.63x10-4 )2 / 0.02         (∵ Concentration is 0.02M)

⇒ Kh  =  6.6 x 10-6

Now , Kh  =  Kw / Ka

⇒  K=  Kw / Kh

= 10-14 / 6.6 x 10-6

= 1.51 x 10-9

 


Exercise 1 ( Page No. : 238 )
Q:
A:

Ionic product,

Kw   =  [H+] [ OH-

Let [H+]   =  x.

Since [H+]  =  [ OH-] , Kw  =  x2

⇒ Kw at 310K is 2.7x 10-14

∴   2.7x 10-14 = x2

⇒ x  =  1.64 x 10-7

⇒ [H+]   = 1.64 x 10-7

⇒ pH  = -log [H+

= -log (1.64 x 10-7)

= 6.78

Hence, the pH of neutral water is 6.78.


Exercise 1 ( Page No. : 238 )
Q:
A:

CaSO4(s)   ↔   Ca 2+ (aq) + SO2-4(aq)

Ksp   =  [ Ca 2+ ] [ SO2- ]

Let the solubility of CaSO4 be s.

Then, Ksp   = s2

9.1 x 10-6  = s2

s  =  3.02 x 10-3 mol/L

Molecular mass of CaSO4 = 136 g/mol

Solubility of  CaSO4 in gram/L = 3.02 × 10-3 × 136 = 0.41 g/L

This means that we need 1L of water to dissolve 0.41g of CaSO4

Therefore, to dissolve 1g of CaSO4 we require  = 1/0.41 L = 2.44 Lof water.