Why are Mn2+compounds more stable than Fe2+ towards oxidation to their +3 state?
Electronic configuration of Mn2+ is [Ar]18 3d5.
Electronic configuration of Fe2+ is [Ar]18 3d6.
It is known that half-filled and fully-filled orbitals are more stable. Therefore, Mn in (+2) state has a stable d5 configuration. This is the reason Mn2+shows resistance to oxidation to Mn3+. Also, Fe2+has 3d6 configuration and by losing one electron, its configuration changes to a more stable 3d5 configuration. Therefore, Fe2+ easily gets oxidized to Fe+3 oxidation state.
The rate constant for the decomposition of N2O5 at various temperatures is given below:
T/°C |
0 | 20 | 40 | 60 | 80 |
105 X K /S-1 |
0.0787 | 1.70 | 25.7 | 178 | 2140 |
Draw a graph between ln k and 1/T and calculate the values of A and Ea.
Predict the rate constant at 30 º and 50 ºC.
NCERT questions are designed to test your understanding of the concepts and theories discussed in the chapter. Here are some tips to help you answer NCERT questions effectively:
Welcome to the NCERT Solutions for Class 12 Chemistry - Chapter . This page offers a step-by-step solution to the specific question from Excercise 2 , Question 2: Why are Mn2+compounds more stable than Fe2+ towards oxidation to their +3 state?....
Comments
easy to understand
your answers are great but i would like to suggest that you should give the answer in such a manner that we can scroll down because here at each step we have to click which is time consuming
Question is different it is asking why mn+2 is more stable but your answer says that Fe is more stable
Best
grt
But in question fe+2 is more stable than MN+2,why,total chemistry is wrong.total exceptionð¿
Best explain
Very useful, thanks
Thanks
Good answer helpful