A spherical conducting shell of inner radius r1 and outer radius r2 has a charge Q.
(a) A charge q is placed at the centre of the shell. What is the surface charge density on the inner and outer surfaces of the shell?
(b) Is the electric field inside a cavity (with no charge) zero, even if the shell is not spherical, but has any irregular shape? Explain.
(a) Charge placed at the centre of a shell is +q. Hence, a charge of magnitude - q will be induced to the inner surface of the shell. Therefore, total charge on the inner surface of the shell is - q.
Surface charge density at the inner surface of the shell is given by the relation,
A charge of +q is induced on the outer surface of the shell. A charge of magnitude Q is placed on the outer surface of the shell. Therefore, total charge on the outer surface of the shell is Q + q. Surface charge density at the outer surface of the shell,
(b) Yes
The electric field intensity inside a cavity is zero, even if the shell is not spherical and has any irregular shape. Take a closed loop such that a part of it is inside the cavity along a field line while the rest is inside the conductor. Net work done by the field in carrying a test charge over a closed loop is zero because the field inside the conductor is zero. Hence, electric field is zero, whatever is the shape.
NCERT questions are designed to test your understanding of the concepts and theories discussed in the chapter. Here are some tips to help you answer NCERT questions effectively:
Welcome to the NCERT Solutions for Class 12 Physics - Chapter . This page offers a step-by-step solution to the specific question from Excercise 1 , Question 15: A spherical conducting shell of inner radius r1 and outer radius r2 has a charge Q. (a) A charge ....
Comments
Why is Q charge not indused
Thanks ððð
How to prepare for JEE