The plates of a parallel plate capacitor have an area of 90 cm2 each and are separated by 2.5 mm. The capacitor is charged by connecting it to a 400 V supply.
(a) How much electrostatic energy is stored by the capacitor?
(b) View this energy as stored in the electrostatic field between the plates, and obtain the energy per unit volume u. Hence arrive at a relation between u and the magnitude of electric field E between the plates.
Area of the plates of a parallel plate capacitor, A = 90 cm2 = 90 × 10 - 4 m2
Distance between the plates, d = 2.5 mm = 2.5 × 10 - 3 m
Potential difference across the plates, V = 400 V
(a) Capacitance of the capacitor is given by the relation,
Electrostatic energy stored in the capacitor is given by the relation,
Where,
= Permittivity of free space = 8.85 × 10 - 12 C2 N - 1 m - 2
Hence, the electrostatic energy stored by the capacitor is 2.55 x 10-6 J
(b) Volume of the given capacitor,
Energy stored in the capacitor per unit volume is given by,
Where,
= Electric intensity = E
What conclusion can you draw from the following observations on a resistor made of alloy manganin?
Current A | Voltage V | Current A | Voltage V |
0.2 | 3.94 | 3.0 | 59.2 |
0.4 | 7.87 | 4.0 | 78.8 |
0.6 | 11.8 | 5.0 | 98.6 |
0.8 | 15.7 | 6.0 | 118.5 |
1.0 | 19.7 | 7.0 | 138.2 |
2.0 | 39.4 | 8.0 | 158.0 |
NCERT questions are designed to test your understanding of the concepts and theories discussed in the chapter. Here are some tips to help you answer NCERT questions effectively:
Welcome to the NCERT Solutions for Class 12 Physics - Chapter . This page offers a step-by-step solution to the specific question from Excercise 1 , Question 26: The plates of a parallel plate capacitor have an area of 90 cm2 each and are separated by 2.5 mm. Th....
Comments
Hii