What is the de Broglie wavelength of a nitrogen molecule in air at 300 K? Assume that the molecule is moving with the root-mean square speed of molecules at this temperature. (Atomic mass of nitrogen = 14.0076 u)
Temperature of the nitrogen molecule, T = 300 K
Atomic mass of nitrogen = 14.0076 u
Hence, mass of the nitrogen molecule, m = 2 × 14.0076 = 28.0152 u
But 1 u = 1.66 × 10 −27 kg
Therefore, m = 28.0152 ×1.66 × 10 −27 kg
Planck’s constant, h = 6.63 × 10 −34 Js
Boltzmann constant, k = 1.38 × 10 −23 J K −1
We have the expression that relates mean kinetic energy (3/2 kT ) of the nitrogen molecule with the root mean square speed (vrms) as:
Therefore, the de Broglie wavelength of the nitrogen molecule is 0.028 nm.
NCERT questions are designed to test your understanding of the concepts and theories discussed in the chapter. Here are some tips to help you answer NCERT questions effectively:
Welcome to the NCERT Solutions for Class 12 Physics - Chapter . This page offers a step-by-step solution to the specific question from Excercise 1 , Question 19: What is the de Broglie wavelength of a nitrogen molecule in air at 300 K? Assume that the molecule i....
Comments