A sample of paramagnetic salt contains 2.0 x 1024 atomic dipoles each of dipole moment 1.5 x 10-23 J T-1. The sample is placed under a homogeneous magnetic field of 0.64 T, and cooled to a temperature of 4.2 K. The degree of magnetic saturation achieved is equal to 15%. What is the total dipole moment of the sample for a magnetic field of 0.98 T and a temperature of 2.8 K? (Assume Curie's law)
Number of atomic dipoles, n= 2.0 × 1024
Dipole moment of each atomic dipole, M= 1.5 × 10 - 23J T - 1
When the magnetic field, B1= 0.64 T
The sample is cooled to a temperature, T1= 4.2°K
Total dipole moment of the atomic dipole, Mtot= n × M
= 2 × 1024× 1.5 × 10 - 23
= 30 J T - 1
Magnetic saturation is achieved at 15%.
Hence, effective dipole moment,
When the magnetic field, B2= 0.98 T
Temperature, T2= 2.8°K
Its total dipole moment = M2
According to Curie's law, we have the ratio of two magnetic dipoles as:
Therefore, 10.336 J T-1 is the total dipole moment of the sample for a magnetic field of 0.98 T and a temperature of 2.8 K.
NCERT questions are designed to test your understanding of the concepts and theories discussed in the chapter. Here are some tips to help you answer NCERT questions effectively:
Welcome to the NCERT Solutions for Class 12 Physics - Chapter . This page offers a step-by-step solution to the specific question from Excercise 1 , Question 23: A sample of paramagnetic salt contains 2.0 x 1024 atomic dipoles each of dipole moment 1.5 x 10-23 J....
Comments